"I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of the degree of Bachelor Mechanical Engineering (Thermal - Fluids)"

Signature

Name of Supervisor

Date

. THE BOON TUAN

8 DECEMBER 2005

THERMAL COMFORT STUDY AND AIRFLOW SIMULATION INSIDE LECTURE ROOM

LIM CHIK MING

A thesis submitted in partial fulfillment of the requirement for the award of the degree of Bachelor of Mechanical Engineering (Thermal – Fluids)

Faculty of Mechanical Engineering

Kolej Universiti Teknikal Kebangsaan Malaysia

DECEMBER, 2005

"I declared that this thesis entitled 'Thermal Comfort Study and Airflow Simulation Inside Lecture Room' is the result of my own research except as cited in reference."

Signature

Name of Candidate

Date

. LIM CHIK MING

. 8 DECEMBER 2005

Especially dedicated to Daddy, Mummy, Chik Liat, Mung Sze, Chik Long and Mei Suan.

Because of yours love, I feel so touch and wonderful

致给亲爱的爸爸,妈妈,志烈,梦诗,志隆与美霜。 因为您的爱,让我感到关怀与幸福……

ACKNOWLEDGEMENT

First of all, I would like to express my deepest appreciation to my supervisor Mr. Tee Boon Tuan for offering me his extensive knowledge in thermal comfort and his patience, guidance, helps and encouragement to me throughout this project. His academic manner and his approach to problems will benefit me in my future study and life.

I would also like to give my appreciation to Mr. Johnson Lim, Mr. Gan Chin Kim and Mr. Ahmad Zaki Bin Abdullah for their helps and valuable suggestion for my project. A special thanks to all staffs in FKM Phase B & CAE Lab and staffs in Faculty of Electrical Engineering for their kind support and guidance throughout this project.

Finally, I will give my thanks to my family and colleague for their continuous support, help and encouragement, which are my energy of proceeding.

ABSTRACT

The main purpose of this study is to investigate relationship between thermal comfort level and air flow motion in the lecture rooms by using experimental and computer software simulation. The boundaries of this study are considered as lecture rooms with mechanical force ventilation system. The indoor air parameters addressed in this study are air velocity, air temperature and relative humidity. The human internal parameter are those of activity level with metabolic rate of 1.2 met and clothing insulation also being consider. For the thermal comfort in lecture room analysis, the ASHRAE 55-92 standard, ASHRAE seven point scales and McIntyre five point scales can be use. Air motion simulations were analyzed on the Computational Fluid Dynamics (CFD) software named CFX. The results of experiment are compared and analyzed with simulation result. SPSS software is use in this study to correlate and conducting statistical analysis on the related data sets.

ABSTRAK

Tujuan kajian ini dijalankan adalah untuk mengkaji hubungan di antara keselesaan termal dengan aliran udara di dalam bilik kuliah berdasarkan ujikaji dan simulasi komputer. Ruang kajian ini adalah bilik kuliah yang menggunakan sistem pengudaraan paksaan secara mekanikal. Parameter fizikal ditekankan pada kajian ini adalah halaju udara, suhu udara dan kelembapan relatif. Parameter dalaman individu dalam kajian ini juga dikenalpasti dengan kadar metabolik adalah 1.2 met dan pakaian bernilai 0.48 clo. Dalam menilai keselesaan termal di dalam bilik kuliah, piawaian yang dirujuk adalah piawaian ASHRAE 55-92, skala tujuh markah ASHRAE dan skala lima markah McIntyre. Bagi kajian pergerakan udara, perisian CFD iaitu CFX digunakan. Keputusan ujikaji dalam kajian ini akan dibandingkan dengan keputusan simulasi daripada CFX. Selain itu, perisian SPSS juga digunakan untuk menjalankan analisis stastistik.

CONTENT

CHAPTER		ITEM	PAGE
1	INT	1	
	1.1	Background of the Study	2
	1.2	Statement of the Problem	3
	1.3	Importance of the Study	4
	1.4	Objective of the Study	4
	1.5	Scope of the Study	5
	1.6	Expected Outcomes	6
2	THE	7	
	2.1	Indoor Air Flow	7
		2.1.1 Flow Pattern in Rooms	7
		2.1.2 Air Distribution Methods (Classification)	9
	2.2	Thermal Comfort	10
		2.2.1 Related Parameter in Thermal Comfort Analysis	11
		2.2.2 ASHRAE 55-92 Standard	12
	2.3	Air Conditioning	13
		2.3.1 Air Conditioning System	14
		Unit Unit	17
		2.3.2 Air Conditioning Comfort	16
		and Effective Temperature	

CHAPTER		PAGE	
	2.4	Computational Fluid Dynamics	17
		(CFD)	
		2.4.1 Turbulence Modeling	18
		2.4.2 Standard $k - \varepsilon$ Turbulence Model	20
		2.4.3 RNG $k - \varepsilon$ Turbulence Model	22
		2.4.4 Reynolds Stress Turbulence Model	23
3	LIT	ERATURE REVIEW	25
	3.1	Air Flow and Thermal Comfort	25
		Simulation Studies of Wind	
		Ventilated Classrooms in Malaysia	
		by Samirah & Kannan, (1996).	
		3.1.1 Methodology	26
		3.1.2 Result and Analysis	26
		3.1.3 Conclusion	27
	3.2	Thermal Comfort Requirements for	28
		People with Physical Disabilities by	
		Webb & Parson, (1997)	
		3.2.1 Methodology	28
		3.2.2 Instrumentation	29
		3.2.3 Results and Discussions	30
		3.2.4 Conclusions	33
	3.3	Study of the Effects of Air Flow	34
		towards Comfort in Lecture Room	
		by Tee, (2001)	
		3.3.1 Methodology	34
		3.3.2 Results	36
		3.3.3 Conclusions	36

CHAPTER		ITEM	PAGE
	3.4	Simulation of Air flow in Lectur	re 37
		Rooms by Lim, (2002)	
		3.4.1 Methodology	38
		3.4.2 Result and Analysis	39
	3.5	Validation of CFD Climat	te 40
		Simulations in Submarines b	y
		Anders, (2004)	
		3.5.1 Methodology	41
		3.5.2 Results	42
		3.5.3 Conclusions	43
	3.6	Overall Summary of Literatur	re 43
		Review	
	3.7	Comparison of study.	45
4	MET	HODOLOGY	46
	4.1	Lecture Rooms or Boundary	47
		Condition	
	4.2	Instrumentation	47
		4.2.1 Room Physical Data	48
		Measurement	
		4.2.2 Indoor Air Parameters	48
		Measurement	
		4.2.3 Thermal Comfo	rt 50
		Questionnaires	
		4.2.4 CFX Software	50
	4.3	Procedures	51
		4.3.1 Experiment Procedures	51
		4.3.2 Simulation Procedures	52
		4.3.3 Procedures Flow Chart	53
	4.4	Analysis Method	54

CHAPTER		ІТЕМ	PAGE
		4.4.1 Questionnaires (vote) Analysis	54
		4.4.2 Thermal Comfort Result Analysis	55
		4.4.3 Simulation and Experiment Analysis	57
	4.5	Experimental Condition Assumptions	57
5	REST	ULTS ANALYSIS	59
	5.1	Actual Air Properties Measurement	60
		5.1.1 Result of Actual Measurement for Lecture Room BK1	60
		5.1.2 Result of Actual Measurement for Lecture Room BK2	61
		5.1.3 Result of Actual Measurement for Lecture Room BT1	62
		5.1.4 Result of Actual Measurement for Lecture Room BT4	63
		5.1.5 Summary of Actual Measurement Result	64
	5.2	CFD Simulation Results	65
		5.2.1 Simulation Result for Lecture Room BK1	66
		5.2.2 Simulation Result for Lecture Room BK2	66

CHAPTER	ІТЕМ	PAGE				
	5.2.3 Simulation Result for	67				
	Lecture Room BT1					
	5.2.4 Simulation Result for	68				
	Lecture Room BT4					
	5.2.5 Summary of Simulation	69				
	Results					
5.3	3 Comparison of Actual Measurement	70				
	and CFD Simulation					
	5.3.1 Results Comparison for	70				
	Lecture room BK1					
	5.3.2 Results Comparison for	72				
	Lecture room BK2					
	5.3.3 Results Comparison for	74				
	Lecture room BT1					
	5.3.4 Results Comparison for	76				
	Lecture room BT4					
	5.3.5 Summary of Actual	78				
	Measurement Results					
5.4	Result Validation	78				
5.5	Stream Plot Simulation	79				
	5.5.1 Stream Plot for Lecture	80				
	Room BK1					
	5.5.2 Stream Plot for Lecture	81				
	Room BK2					
	5.5.3 Stream Plot for Lecture	82				
	Room BT1					
	5.5.4 Stream Plot for Lecture	83				
	Room BT4					
6 ТН	ERMAL COMFORT ANALYSIS	84				
6.1	Subjects Analysis	85				

CHAPTER		П	TEM		PAGE
	6,1,1	Subjects	Analysis	for	85
		Lecture R	oom BK1		
	6.1.2	Subjects	Analysis	for	86
		Lecture R	oom BK2		
	6.1.3	Subjects	Analysis	for	86
		Lecture R	oom BT1		
	6.1.4	Subjects	Analysis	for	87
		Lecture R	oom BT4		
6.2	Therm	al Comfort	Vote Analysi	s	88
	6.2.1	Thermal C	omfort Mean	Vote	88
		Analysis :	for Lecture 1	Room	
		BK1			
	6.2.2	Thermal C	omfort Mean	Vote	89
		Analysis 1	for Lecture 1	Room	
		BK2			
	6.2.3	Thermal C	omfort Mean	Vote	89
		Analysis 1	for Lecture I	Room	
		BT1			
	6.2.4	Thermal C	omfort Mean	Vote	90
		Analysis i	for Lecture I	Room	
		BT4			
	6.2.5	Summary	for The	ermal	91
		Comfort	Mean	Vote	
		Analysis			
6.3	Linear	Regres	ssion Equ	ation	91
	Analys	sis			
	6.3.1	Linear Re	gression Ana	alysis	92
		for Lecture	e Room BK1		
	6.3.2	Linear Re	gression Ana	alysis	93
		for Lecture	e Room BK2		

CHAPTER	ITEM	PAGE
	6.3.3 Linear Regression Analysis for Lecture Room BT1	94
	6.3.4 Linear Regression Analysis for Lecture Room BT4	95
	6.3.5 Summary Linear Regression and Thermal Comfort Analysis	96
7	DISCUSSION AND CONCLUSION	97
	7.1 Discussion	97
	7.1.1 Actual Air Properties Measurement	98
	7.1.2 CFD Simulation	100
	7.1.3 Thermal Comfort Analysis	101
	7.1.4 Air Conditioning Unit Position	102
	7.2 Conclusion	103
	7.3 Problem in Study	105
	7.4 Recommendation for Future Study	106
	REFERENCES	107
	APPENDIX	109

LIST OF TABLE

NO.	TITLE	PAGE
2.1	Air Flow Pattern and Air Quality. (by	9
2.2	Etheridge & Sandberg, 1996) Metabolic Rate for Difference Activity (by ASHRAE, 2001)	11
2.3	Types of Wear and 'clo' Value (by ASHRAE, 2001)	12
2.4	Difference between ISO 7730-84 and ASHRAE 55-92 Standards. (by Adnan, 1997)	13
3.1	Simulated Outputs Data (by Samirah & Kannan, 1996)	27
3.2	Environmental Conditions - Target and Deviation (For ta and rh), (by Webb & Parson, 1997)	30
3.3	Significance Scores for Interaction between Population and Gender of PMV = -1.5, 0, +1.5 (by Webb & Parson, 1997)	32
3.4	Dimension of Three Lecture Room for Pilot test (by Tee, 2001)	35
3.5	Comparison of Studies	45
4.1	Basic in Thermal Comfort Analysis	50

NO.	TITLE	PAGE
4.2	Description for Lecture Room Simulation in	52
	ANSYS CFX	
4.3	PTV Scale	54
4.4	PAF Scale	55
4.5	PRAF Scale	55
4.6	SD Scale	55
4.7	Guilford's Suggested Interpretations for Values of R (Sprinthall, 1993)	56
4.8	Model fitted result by SPSS, from Tee, (2001)	56
5.1	Table for the division Results for Points/Zones Measurement in BK1	61
5.2	Table for the division Results for Points/Zones Measurement in BK2	62
5.3	Table for the division Results for Points/Zones Measurement in BT1	63
5.4	Table for the division Results for Points/Zones Measurement in BT4	64
5.5	Summary of Actual Measurement Results	65
5.6	Results for CFD Simulation in BK1	66
5.7	Results for CFD Simulation in BK2	67
5.8	Results for CFD Simulation in BT1	68
5.9	Results for CFD Simulation in BT4	69
5.10	Summary of CFD Simulation Results	69
5.11	Comparison of Air Velocity Result for BK1	70
5.12	Comparison of Air Temperature Result for BK1	71
5.13	Overall Absolute Error for BK1	71
5.14	Comparison of Air Velocity Result for BK2	72
5.15	Comparison of Air Temperature Result for	73

NO.	TITLE	PAGE
5.16	Overall Absolute Error for BK2	73
5.17	Comparison of Air Velocity Result for BT1	74
5.18	Comparison of Air Temperature Result for	75
	BT1	7.5
5.19	Overall Absolute Error for BT1	75
5.20	Comparison of Air Velocity Result for BT4	76
5.21	Comparison of Air Temperature Result for BT4	77
5.22	Overall Absolute Error for BT4	77
5.23	Summary of Average Absolute Error	78
5.24	Linear Regression Analysis Result	7 9
6.1	Overall Thermal Comfort Mean Vote Analysis for BK1	88
6.2	Overall Thermal Comfort Mean Vote	89
	Analysis for BK2	
6.3	Overall Thermal Comfort Mean Vote	90
	Analysis for BT1	
6.4	Overall Thermal Comfort Mean Vote	90
	Analysis for BT4	
6.5	Linear Regression Analysis for BK1	92
6.6	Linear Regression Analysis for BK2	93
6.7	Linear Regression Analysis for BT1	94
6.8	Linear Regression Analysis for BT4	95
6.9	Overall Neutral Air Velocity of Regression Analysis	96
6.10	Comparison of Neutral Air Velocity and	96
	Actual Air Velocity	
7.1	Average and Range of Air Parameter in	98
	Lecture Rooms	
7.2	Comparison of Air Parameter with Other	99
	Local Research	

NO.	TITLE	PAGE
7.3	Overall Double Regression Equation	102
	Analysis	
C1	Indoor Air Parameter Reading for Lecture	123
	Room BK1	
C2	Air Conditioning Unit Parameter Reading	123
	for Lecture Room BK1	
C3	Air Conditioning Unit Parameter Reading	124
	by Using "Accubalance" for Lecture Room	
	BK1	
C4	Indoor Air Parameter Reading for Lecture	126
	Room BK2	
C5	Air Conditioning Unit Parameter Reading	126
	for Lecture Room BK2	
C6	Air Conditioning Unit Parameter Reading	127
	by Using "Accubalance" for Lecture room	
	BK2	
C7	Indoor Air Parameter Reading for Lecture	129
	Room BT1	
C8	Air Conditioning Unit Parameter Reading	129
	for Lecture Room BT1	
C9	Indoor Air Parameter Reading for Lecture	131
	Room BT4	
C10	Air Conditioning Unit Parameter Reading	131
	for Lecture Room BT4	
G1	Subject Analysis for Lecture Room BK1	150
G2	Subjects Clothing Insulation Analysis for	151
	Lecture Room BK1	
G3	Thermal comfort Vote Analysis for Lecture	151
	Room BK1	
G4	Subject Analysis for Lecture Room BK2	152

NO.	TITLE	PAGE
G5	Subjects Clothing Insulation Analysis for	153
	Lecture Room BK2	
G6	Thermal comfort Vote Analysis for Lecture	153
	Room BK2	
G7	Subject Analysis for Lecture Room BT1	154
G8	Subjects Clothing Insulation Analysis for	155
	Lecture Room BT1	
G9	Thermal comfort Vote Analysis for Lecture	155
	Room BT1	
G10	Subject Analysis for Lecture Room BT4	156
G11	Subjects Clothing Insulation Analysis for	157
	Lecture Room BT4	
G12	Thermal comfort Vote Analysis for Lecture	157
	Poom RT4	

LIST OF FIGURE

NO.	TITLE	PAGE
2.1	Plume Flow in a Room. The Plume Flow	8
	Affects Its Own Environment. (by	
	Etheridge & Sandberg, 1996)	
2.2	Jet Flow in a Room. (a) Short Room & (b)	8
	Long Room (by Etheridge & Sandberg, 1996)	
2.3	Comfort Conditions for Light Activity (by	14
	Ananthanarayanan, 2000)	
2.4	Packaged Split System (by	15
	Ananthanarayanan, 2000)	
2.5	Packaged Ducted Unit. (by	16
	Ananthanarayanan, 2000)	
2.6	Comfort Zone and Effective Temperature	17
	Scale. (by Ananthanarayanan, 2000)	
3.1	The Actual Mean Vote (AMV) of Overall	31
	thermal Sensation for People with Physical	
	Disabilities Compared with those People	
	Without Physical Disabilities and the PMV	
	for the Three Experiment Conditions. (By	
	Webb & Parson, 1997)	

NO.	TITLE	PAGE
3.2	The Percentage Of People Dissatisfied for	32
	People with Physical Disabilities Compared	
	with Those of People without Physical	
	Disabilities for the Three Experimental	
	Conditions of PMV +1.5, 0,-1.5. The	
	Percentage Figure Labels show Fanger's	
	(1970) Predicted Percentage Dissatisfied for	
	Those Conditions	
3.3	Zones inside a Lecture Room (by Tee,	35
	2001)	
3.4	A Typical Fixed Arrangement for Lecture	38
	Room. (by Lim, 2002)	
3.5	Stream Plots for Crossed Location	39
	Configuration of Air-Conditioning Units.	
	(by Lim, 2002)	
3.6	Stream Plots for Configuration Using In-	40
	ceiling Cassette Split Air-Conditioning	
	Units. (by Lim, 2002)	
3.7	Dimensions of the Mock-up. (by Anders,	41
	2004)	
3.8	Air speed at $x = 0.9$, 2.6 and 4.3 m in	42
	Simulation Performed with the k-E Model.	
	(by Anders, 2004)	
3.9	Air Temperature at $x = 0.9$, 2.6 and 4.3 in	43
	Simulation Performed with the k-E Model.	
	(by Anders, 2004)	
4.1	The TSI VelociCalc Plus Anemometer	49
	(Model 8347A)	
4.2	Fixing of VelociCalc Plus Anemometer	49
	(Model 8347A)	
4.3	Procedures Flow Chart	53

NO.	TITLE	PAGE
5.1	Stream Plots for Simulation in Lecture	80
	Room BK1	
5.2	Stream Plots for Simulation in Lecture	81
	Room BK2	
5,3	Stream Plots for Simulation in Lecture	82
	Room BT1	
5.4	Stream Plots for Simulation in Lecture	83
	Room BT4	
7.1	Location of Air Conditioner Unit for BT1 &	103
	BT4	
C1	Lecture Room BK1	116
C2	Lecture Room BK2	116
C3	Lecture Room BT1	117
C4	Lecture Room BT4	117
C5	Air Inlet and Refreshing Chamber in	118
	Lecture Room BK1 & BK2	
C6	Split Unit Air Conditioning Unit in Lecture	118
	Room BT1 & BT4	
C7	Anemometer Setting	119
C8	Diffuser Air Flow Rate Measuring by Using	119
	Accubalance Flow Meter	
C9	Plan View on Lecture Room BK1 with 20	120
	measurement points	
C10	Plan View on Lecture Room BK2 with 20	120
	measurement points	
C11	Plan View on Lecture Room BT1 with 20	121
	measurement points	
C12	Plan View on Lecture Room BT4 with 20	121
	measurement points	
C13	Air Conditioning Chamber Position in	122
	Lecture Room BK1	

NO.	TITLE	PAGE
C14	Air Conditioning Chamber Position in	125
C15	Lecture Room BK2 Air Conditioning Units Position in Lecture	128
C16	Room BT1 Air Conditioning Units Position in Lecture Room BT4	130
D1	Plan Layout for Lecture Room BK1 & BK2	135
D2	Plan Layout for Lecture Room BT1	136
D3	Plan Layout for Lecture Room BT4	137
E1	Geometry layout of Lecture Room BK1 in Simulation Model	138
E2	Measuring Points in Lecture Room BK1	138
E3	Geometry layout of Lecture Room BK2 in Simulation Model	139
E4	Measuring Points in Lecture Room BK2	139
E5	Geometry layout of Lecture Room BT1 in Simulation Model	140
E6	Measuring Points in Lecture Room BT1	140
E7	Geometry layout of Lecture Room BT4 in Simulation Model	141
E8	Measuring Points in Lecture Room BT4	141

LIST OF SYMBOL

SYMBOL DEFINITION

A Area

ADPI Air Distribution Performance Index

AMV Actual Mean Vote

ASHRAE American Society of Heating, Refrigerating and Air-

Conditioning Engineering

BK Bilik Kuliah (Lecture Room)

BT Bilik Taklimat (Lecture Room)

C Specific Heat

CFD Computational Fluid Dynamics

CFM Cubic Feet Per Minutes

clo Clothing Insulation

COP Coefficient of Performance

div Divergence

DK Dewan Kuliah (Lecture Hall)

EDT Effective Draft Temperature

EER Efficiently Rating

ISO International Standard Organization

k Kinetic energy

KUITTHO Kolej Universiti Teknologi Tun Hussein Onn

LES Large Eddy Simulation

met metabolic

P Pressure