COMPARISON OF SAND CASTING SURFACE ROUGHNESS AND DIMENSION ACCURACY BETWEEN ALUMINIUM SILICON CARBIDE AND TIN SILICON CARBIDE

ABD HALEM BIN ABD RAZAK B050810290

UNIVERSITI TEKNIKAL MALAYSIA MELAKA 2011

C Universiti Teknikal Malaysia Melaka

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

COMPARISON OF SAND CASTING SURFACE ROUGHNESS AND DIMENSION ACCURACY BETWEEN ALUMINIUM SILICON CARBIDE AND TIN SILICON CARBIDE

This report submitted in accordance with requirements of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor of Manufacturing Engineering (Manufacturing Process)

by

ABD HALEM BIN ABD RAZAK B050810290

FACULTY OF MANUFACTURING ENGINEERING 2011

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

TAJUK: Comparison of Sand Casting Surface Roughness and Dimension Accuracy between Aluminium Silicon Carbide and Tin Silicon Carbide

SESI PENGAJIAN: 2010/2011 Semester 2

Saya ABD HALEM BIN ABD RAZAK

mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. **Sila tandakan ($\sqrt{}$)

SULIT

TERHAD

TIDAK TERHAD

(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia yang termaktub di dalam AKTA RAHSIA RASMI 1972)

(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

Disahkan oleh:

Alamat Tetap:

PENYELIA PSM

NO 26, Jalan Desa Molek 12,

Taman Desa Molek, Air Molek,

75460, Melaka.

Tarikh: 20 May 2011

Tarikh: 20 May 2011

DECLARATION

I hereby, declared this report entitled "Comparison of Sand Casting Surface Roughness and Dimension Accuracy between Aluminum Silicon Carbide and Tin Silicon Carbide" is the results of my own research except as cited in references.

Signature	:	
Author's Name	:	Abd Halem Bin Abd Razak
Date	:	20 May 2011

APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of UTeM as a partial fulfillment of the requirements for the degree of Bachelor of Manufacturing Engineering (Manufacturing Process). The members of the supervisory committee are as follow:

.....

Principle Supervisor

Co- Supervisor

ABSTRAK

Tuangan pasir adalah proses tuangan logam lebur yang akan dituang kedalam acuan. Dalam kajian ini, mengkaji antara aluminium silicon carbide dengan tin silicon carbide untuk mengetahui kekasaran permukaan dan ketepatan dimensi (mm). Objektif utama perlaksanaan kajian ini adalah untuk mengkaji kekasaran permukaan dan ketepatan dimensi (mm) manakah yang baik melalui proses tuangan pasir untuk alat pengeluaran. Dalam kajian ini, bahan utama yang digunakan ialah aluminium LM6 dan tin sebagai bahan utama dan 'silicon carbide' sebagai bahan yang digunakan untuk penetulang. Sebelum melakukan proses tuangan pasir, bahan ini akan di komposisikan antara aluminium dan tin dengan 'silicon carbide' mengikut pembolehubah yang ditetapkan. Daripada analisis antara aluminium dan tin akan mengkaji antara bahan yang berlainan akan mempengaruhi prestasi produk akhir dalam kontek ketepatan dimensi (mm) dan kekasaran permukaan.

ABSTRACT

Casting process basically involves pouring molten metal into a mould cavity. In this study, aluminum and tin with reinforcement with silicon carbide to determine affected surface roughness and dimensional accuracy (mm). The main objective of the implementation of this study was to investigate the different material aluminium and tin reinforcement with silicon carbide on dimensional accuracy and surface roughness using sand casting for manufacturing equipment. In this study, the main material used is aluminum LM6 and tin as the main material and the silicon carbide as the material used to reinforcement. Before the process of sand casting, this material will be composition between aluminum and tin with the silicon carbide. From the analysis of aluminum and tin with material composition will be affect the performance of the final product in the context of dimensional accuracy (mm) and surface roughness.

ACKNOWLEDGEMENT

Alhamdulillah and thank to Allah S.W.T. for giving me strength and ability to accomplish this project research successfully. I would like to take the utmost opportunity to express my sincere and gratitude to my supervisor, Prof. Dr. Mohd Razali Bin Muhamad and core supervisor, Mr Taufik who is always giving me supports and guidance throughout the year in completing this 'Projek Sarjana Muda'. Besides that, thanks a lot to all lecturers and staffs of Faculty of Manufacturing Engineering.

Finally, to all my fellow friends who involves direct or indirectly that always stand strong beside me in giving opinions and supports throughout our relationship, I really thankful and appreciate it.

DEDICATION

This thesis is dedicated to my parents Abd Razak Bin Md Yatim and Awa Bte Che Mat who introduced me to the joy of reading from birth, enabling such a study to take place today.

TABLE OF CONTENT

Abstra	ık	i
Abstra	Abstract	
Ackno	owledgement	iii
Dedic	ation	iv
Table	of Content	v
List of	f Tables	ix
List of	List of Figures	
	List of Abbreviations	
List of	fAbbreviations	xiv
List of	fAbbreviations	xiv
	f Abbreviations	xiv 1
1. IN	TRODUCTION	1
1. IN 1.1	TRODUCTION Background	1 1

2. LI	ITERATURE REVIEW	4
2.1	Casting	4
2.1.1	Introduction	4
2.1.2	Sand Casting	5

v

2.1.3	The Sand Casting Process	7
2.1.4	Mould Design	14
2.2	Aluminium	15
2.2.1	Introduction	15
2.2.2	Aluminium Silicon Carbide	16
2.2.3	Aluminium Casting	17
2.3	Tin Properties	17
2.4	Metal Matrix Composite	19
2.5.	Reinforcement	20
2.6	Surface Roughness	21
2.7	Dimension Accuracy	22

3. M	ETHODOLOGY	28
3.1	Introduction	28
3.2	Flow chart methodology process	29
3.3	Mechanical Drawing Part	30
3.3.1	SolidWorks	30
3.3.2	Drawing Part	30
3.4	Fused Deposition Modelling (FDM)	31
3.4.1	Machine Specification	32
3.4.2	Working Procedure Fused Deposition Modelling (FDM)	33

3.5	Material Preparation	34
3.6	Sand casting Procedure	35
3.6.1	Mould Design	36
3.6.2	Flow Chart of Step in Sand Casting	37
3.6.3	Step Casting Process	38
3.7	Measurement Equipment	42
3.7.1	Surface Roughness Measurement	42
3.7.2	Basic Specification	43
3.7.3	Dimension Accuracy	43
3.7.4	Coordinate Measuring machine (CMM)	45
3.7.5	Coordinate Measuring machine (CMM) Specification	45
3.7.6	Working Procedure Coordinate Measurement Machine (CMM)	46
4.	RESULT	48
4.1	Introduction	48
4.2	Surface Roughness Result	48
4.2.1	Surface Roughness Analysis	57
4.3	Dimension Accuracy	59

4.31Dimension Accuracy Analysis62

5.	DISCUSSION	63
5.1	Introduction	63

vii

5.2	Sand Properties	63
5.3	Pattern Design	64
5.4	Effect Material Composition	65
5.5	Effect Pouring	65
5.6	Effect Gating Systems	66
5.7	Impact Toughness Test	67

CONCLUSION AND FUTURE WORKS	71
Introduction	71
Conclusion of Research	71
Future Works	72
	Introduction Conclusion of Research

73

REFERENCES

APPENDICES

- A. Gantt Chart PSM
- B APPENDIX B

viii

LIST OF TABLES

2.1	Melting points of some metals	15
2.2	The characteristics of aluminium silicon Carbide	16
2.3	The characteristics of tin	18
2.4	Summarization of the research	24
3.1	400mc specifications (Stratasys, FDM 400mc, system documentation)	32
3.2	Material composition with silicon carbide percentage	34
3.3	Specification of Portable Surface Roughness Tester	43
	SJ-301 for X-axis (drive unit)	
3.4	Specification of Portable Surface Roughness Tester, SJ-301 for detector	44
3.5	Wenzel LH54 specifications	45
4.1	Aluminium Silicon Carbide result surface roughness	49
4.2	Tin Silicon Carbide result surface roughness	53
4.3	Summarization research on the surface roughness analysis in sand casting	58
4.4	The result aluminium silicon carbide data dimension	60
4.5	The result tin silicon carbide data dimension	61
4.6	Summarization research on the dimension accuracy analysis in	62
	sand casting	

ix

5.1	The result Aluminium silicon carbide Toughness testing	69
5.2	The result Tin silicon carbide Toughness testing	69

LIST OF FIGURES

2.1	Pouring molten metal into mould	5
2.2	Two moulds ready for pouring and one left open to show care	8
2.3	A mould, pattern and core box for simple casting	10
2.4	Procedure for making mould	10
2.5	Schematic illustration of sequence of operation for sand casting	11
2.6	Schematic illustration of typical riser-gated systems	13
2.7	Schematic illustration of sand mould, showing various features	14
3.1	Experiment methodology	29
3.2	Isometric projection drawing	30
3.3	3 rd view projection drawing	31
3.4	FDM 400mc machine	32
3.5	Product using FDM machine	33
3.6	Silicon Carbide weighed with a weighing scale	34
3.7	The bell casting basic training equipment.	35
3.8	Methodology of step sand casting process	37
3.9	Pattern using FDM machine	38
3.10	Core plate	38
3.11	Insert (CO2) into drag pattern plate	39

3.12	Cope after ramming with sand and removing pattern, spure, and risers 3			
3.13	Drag plate pattern			
3.14	Process drag removing pattern			
3.15	Drag after removing pattern			
3.16	Core and drag will with plaid pattern			
3.17	Core and drag assemble			
3.18	The molten metal is then poured into the mould			
3.19	The part is allowed to sit and cool			
3.20	The part is removed from mould			
3.21	Portable Surface Roughness Tester, Mitutoyo SJ-301			
3.22	Coordinate Measuring Machine (CMM) Wenzel LH54			
4.1	Measurement surface roughness using Portable Surface Roughness	49		
	Tester, Mitutoyo SJ-301			
4.2	Result testing 1 aluminium silicon carbide surface roughness	50		
4.3	Result testing 2 aluminium silicon carbide surface roughness	50		
4.4	Result testing 3 aluminium silicon carbide surface roughness	51		
4.5	Result testing 4 aluminium silicon carbide surface roughness	51		
4.6	Result testing 5 aluminium silicon carbide surface roughness 5			
4.7	Result testing 1 tin silicon carbide surface roughness	54		
4.8	Result testing 2 tin silicon carbide surface roughness 54			
4.0	Doult testing 2 tip silicon confide surface roughness			

4.10	Result testing 4 tin silicon carbide surface roughness	
4.11	Result testing 5 tin silicon carbide surface roughness	56
4.12	Measurement dimension accuracy using Coordinate Measure	59
	Machine (CMM)	

5.1	Effect the sand mould in core and drag	64
5.2	Sample Impact toughness testing	67
5.3	Pendulum Impact tester machine	68

LIST OF ABBREVIATIONS

ABS	-	Acrylonitrile Butadience Styrene
Al	-	Aluminum
AlSic	-	Aluminum Silicon Carbide
BOM	-	Bil of Material
CMM	-	Coordinate Measurement Machine
CO2	-	Carbon Oxide
FDM	-	Fused Deposition Machine
LCD	-	Liquid Crystal Display
Mm	-	Millimeter
MMC	-	Metal Matrix Composite
m/s	-	meter per second
Pa	-	Pascal
Ra	-	Roughness Average
RSM	-	Root Mean Square
SiC	-	Silicon Carbide
SiO2	-	Silicon Oxide
TinSic	_	Tin Silicon Carbide

CHAPTER 1 INTRODUCTION

1.1 Background

In this study, production tool is produced by using sand casting process. The important element in this study is how to build the accurate dimension accuracy production tool using and surface roughness by sand casting process. The conceptual model of part is created by using software SolidWorks for produce pattern. Typically, these processes involve the design of the production tool part using Solid Works because easy for the designer to interpreted their design and not only fitted with 2Dimensional axis only. Using SolidWorks, the design can be drawn in 3-dimensional (3D) and also drawn in full scale measurement.

The master pattern from SolidWorks and then transferred to Fused Deposition Machine (FDM) machine rapid prototype to create a final part. The pattern is made up from ABS material using FDM machine. The next process is sand casting process and is done by melt the actual master pattern in carbon dioxide (CO2) sand mold. The quality characteristic such as dimensional accuracy will be analyzed using Coordinate Measure Machine (CMM) and portable surface roughness tester.

Apart from that, the reason to conduct this study is to compare the dimension accuracy and surface roughness between aluminum and tin material composition produced by sand casting. Several literature reviews, generally from published journal, are undertaken into this study to identify the significant effect of dimensional accuracy and surface roughness of produced parts. Casting process is the basically involves pouring molten metal into a mould cavity where upon solidification its takes the shape of cavity. A wide variety of the product can be cast. This process is capable of producing intricate shape in one piece including those with internal cavities. The fundamental is essential for the production of good quality and economical casting and for establishing proper technique for mould design casting practice. Solidification and cooling of metals in the mould are effected by several factors including the metallurgical and thermal properties of the metal. The type of mould also has important influence because it affects the rate of cooling of the metal in the mould (Kalpakjian and Schmid, 2006). The reinforced with silicon carbide (SiC) particulates between aluminium and tin produce a homogenous distribution of reinforcement in the matrix. While other methods of production like casting have the problems of reinforcement segregation and clustering, interfacial chemical reactions, high localized residual porosity and poor interfacial bonding (Khairaldien et al., 2007).

1.2 Problem Statement

This study is aimed to find out the answer for the following question which is the dimension accuracy using sand casting produced part is not same as the master pattern. Dimensional accuracy is very important when sand casting is applied because if the final product not accurate, so the product will malfunction. However, the study review of casting process by using different material aluminium and tin reinforcement silicon carbide with indentifying the effect surface roughness. The manufacturer needs to recreate back the casting process and it will cost more for making the product.

1.3 Objective

The objectives of this research are:

- i. To investigate the different material aluminium and tin reinforcement with silicon carbide on dimensional accuracy and surface roughness using sand casting.
- ii. To identify the effect dimension accuracy and surface roughness using sand casting.

1.4 Scope of the Project

This research will emphasize on the casting quality with surface roughness and dimensional accuracy of aluminium and tin with reinforcement silicon carbide in sand casting. The effect of surface roughness and dimensional accuracy according to the different material through sand casting process with studied and explained in this research. In this research used aluminium and tin reinforced with silicon carbide composites in different structural applications. Other than that, production tool is an important component of manufacturing which contributes to a process of designing and developing the tools, methods and techniques necessary to improve manufacturing efficiency and productivity.

The scopes study this project about the:

- a) Material composition (Aluminium and Tin with reinforcement Silicon carbide)
- b) Casting quality (surface roughness and dimensional accuracy)

CHAPTER 2 LITERATURE REVIEW

2.1 Casting

2.1.1 Introduction

In this study, the basic casting principle of the most popular methods of producing parts in metal is by casting. Casting is the process of forming objects by pouring liquid metal into a cavity having the same shape as the finished article (the mould), and then letting it solidify and cool. When removed from the mould, the casting produced should be an exact replica of the mould (Frederick, 1996).

The casting process is little metal is wasted. In most early casting processes many which are still used that be must destroyed in order to remove the product after solidification. The used for permanent mould, which could be used to produce component in endless quantities, was the obvious alternative (Edward, 2003).

The casting and solidification process involve pouring and cooling the liquid metal. The information of the heat transfer and fluid mechanic occurring during pouring and cooling is also necessary (Bibby and Beddoes, 2003). Often, the casting process are important and extensively used manufacturing methods, enabling the production of very complex or intricate parts in nearly all types of metals with high production rates, average to good tolerances and surface roughness, and good material properties (Alting, 1994).

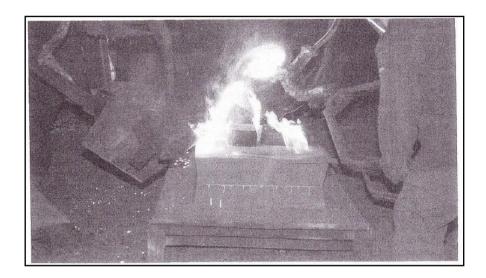


Figure 2.1: Pouring molten metal into mould (Parashar and Mittal, 2007).

2.1.2 Sand casting

In this study, the type of casting method used the sand casting technique process .In foundries; sand is used for making moulds. Natural sand found on the bed and banks of rivers provides an abundant source, although high quality silica sand is also mined. Sand is chemically SiO2 (silicon dioxide) in granular form. Ordinary river sand contains a contain percentage of clay, moisture, non-metallic impurities and traces of magnesium and calcium salts besides silica grains.