PRODUCING CaCu₃Ti₄O₁₂ DOPED LANTHANUM (III) ACETATE HYDRATE VIA SOLID STATE REACTIONS

HARIS FAHAZA GHAZALI

B050810117

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2011

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

PRODUCING CaCu₃Ti₄O₁₂ DOPED LANTHANUM (III) ACETATE HYDRATE VIA SOLID STATE REACTIONS

This report submitted in accordance with requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor Degree of Manufacturing Engineering (Engineering Materials)

by

HARIS FAHAZA BIN GHAZALI

B050810117

FACULTY OF MANUFACTURING ENGINEERING

2011

🔘 Universiti Teknikal Malaysia Melaka

MA	LAYSIA M
KNIN	ELLAKA
III TE	
SAINT	n

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

TAJUK: Producing CaCu₃Ti₄O₁₂ Doped Lanthanum (III) Acetate Hydrate via Solid State Reactions

SESI PENGAJIAN: 2010/11 Semester 2

Saya HARIS FAHAZA B. GHAZALI

mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. **Sila tandakan (/)

SULIT TERHAD TIDAK TERHAD	(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia yang termaktub di dalam AKTA RAHSIA RASMI 1972) (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)
	Disahkan oleh:
Alamat Tetap:	PENYELIA PSM
168 Taman Saga, Jalan Alor Mengkudu,	
05400 Alor Setar, Kedah.	
Tarikh:	Tarikh:
** Jika Laporan PSM ini SULIT atau berkenaan dengan menyatakan se	TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi kali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai

SULIT atau TERHAD.

🗘 Universiti Teknikal Malaysia Melaka

DECLARATION

I hereby, declared this report entitled "Producing CaCu₃Ti₄O₁₂ Doped Lanthanum (III) Acetate Hydrate via Solid State Reactions" is the result of my own research except as cited in references.

Signature	:	
Author's Name	:	HARIS FAHAZA BIN GHAZALI
Date	:	MAY 19 th ,2011

APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of UTeM as a partial fulfilment of the requirements for the degree of Bachelor of Manufacturing Engineering (Engineering Materials). The member of the supervisory committee is as follow:

.....

Supervisor

ABSTRAK

Matlamat penyelidikan ini adalah untuk mengkaji dan memahami cara penghasilan bahan feroelektrik electro-seramik dari CaCu₃Ti₄0₁₂ (CCTO) dengan penambahan bahan asas melalui teknik tindakbalas pepejal. Pengaruh keadaan sepuhlindap (suhu pengkalsinan, suhu pensinteran dan masa) dan konsentrasi gantian untuk fasa pembentukan, struktur mikro dan sifat elektrik (dielektrik malar, lesapan dan ketahanan dielektrik) dari La_{2/3}CaCu₃Ti₄O₁₂ (LCCTO) akan dipelajari secara intensif dalam penyelidikan ini. Teknik konvensional yang digunakan dalam kajian ini meliputi persiapan bahan asas, pencampuran dan pengisaran bebola, pengkalsinan, pembentukkan palet dan proses pensinteran. Teknik ini dipilih bagi penyelidikan ini untuk membolehkan proses pengkalsinan dan pensinteran di masa depan dilakukan dalam jangkamasa pendek dan pada suhu yang rendah, sehingga dapat menjimatkan masa dan tenaga. Parameter yang optimum untuk LCCTO dihasilkan melalui teknik tindakbalas pepejal adalah pengisaran bebola masa 12 jam, kalsinasi pada 1200°C selama 10 jam, dan pengsinteran pada > 1100° C selama 12 jam untuk memanjangkan tempoh masa bagi pemisahan fasa Cu. Walau bagaimanapun, tumpuan kesan pengantian Lantanum (La) pada pemalar dielektrik CCTO dijangka dapat meningkatkan sifat dielektrik pada CCTO. Selain itu, kajian ini adalah untuk menentukan samaada perlu untuk menjalankan kajian lebih lanjut menggunakan bahan gantian La. Oleh itu, dapat disimpulkan bahawa dengan pengantian jumlah tertentu La, sifat elektrik dan lesapan dielektrik CCTO dapat ditingkatkan atau berkurangan bergantung kepada parameter yang digunakan. Keputusan yang dijangka dari penghasilan LCCTO ialah ianya dapat menghasilkan saiz butiran yang seragam dengan nilai tertinggi pemalar dielektrik E_r 33,210.

ABSTRACT

The aim of the study and investigate the electroceramic ferroelectric material of CaCu₃Ti₄0₁₂ (CCTO) was prepared by doping the based material via solid state reaction techniques. The effect of thermal treatment (calcinations temperature, sintering temperature and time) doping concentrations in phase formation, microstructures and electrical (dielectric constant, dielectric loss and resistance) properties of La_{2/3}CaCu₃Ti₄O₁₂ (LCCTO) has been intensively study in this research. The conventional technique used in this experiment is covers preparation of raw material, mixing and ball milling, calcinations, pellet forming and sintering processes. This technique was chosen for this work to enable the calcinations and sintering processes in future carried out in shorter time and lower temperature, therefore it can be save time and energy. The optimum parameter to synthesized LCCTO via solid state technique are milling time for 12 hours, calcinations at 1200°C for 10 hour, and sintering at > 1100°C for 12 hours to prolonged the durations resulted in the segregation of Cu-rich phase. However, the effect doping with the Lanthanum (La) concentration on the dielectric constant CCTO simple simultaneous can exactly improved the dielectric properties of CCTO. Besides that, this sample is to determine the find out for the further study in La doping. Therefore, it can be concluded that by doping with certain amount of La, the electrical and dielectric properties of CCTO can be improved or maybe not depending on the parameters choose. The result expected get from the LCCTO produce is to have clearly uniform grain size with the highest dielectric constant value of \mathcal{E}_r 33,210.

DEDICATION

This dedication goes to my beloved mom's and my late father's, Fauziah Bt. Saad and Ghazali B. Ismail a very supportive siblings, Hafiz Fahaza B. Ghazali, Nadzirah Fahaza B. Ghazali, Hasyraf Fahaza B. Ghazali, Hezry Fahaza B. Ghazali and especially Norshafiza Bt. Abu Bakar and not forget to all my dearest friends, Thank you.

iii

ACKNOWLEDGEMENT

First and foremost, I am very grateful to Allah S.W.T for giving me strength, patience and blessing throughout my period to complete my final year project (Projek Sarjana Muda I and II).

I would like to record my appreciation to Dr. Mohd Warikh Bin Abd Rashid for his continuous supervision, encouragement, knowledge and making innumerable suggestions for clever ways to elucidate this thesis and entire period of research. Without him this thesis is never be completed.

And not forgetting to all my mates, Universiti Teknikal Malaysia Melaka laboratory technicians and individual, who always helps with brilliant ideas and discussion until I finished my final year project.

Finally, I treasure the warmth and love with highly appreciation and dedication to my family, without their support and sacrifice; I won't be here to complete my study in Universiti Teknikal Malaysia Melaka.

God bless you all.

TABLE OF CONTENT

Abstract	i
Abstrak	ii
Dedication	iii
Acknowledgement	iv
Table of Content	v
List of Tables	viii
List of Figures	ix
List Abbreviations	xi
CHAPTER 1: INTRODUCTION	1
1.1 Introduction	1
1.2 Problem Statement	2
1.3 Objective	3
1.4 Scopes of the Study	4
1.5 Research Methodology	
CHAPTER 2: LITERATURE REVIEW	6
2.1 Introduction	6
2.1.1 Structure of $CaCu_3Ti_4O_{12}$ (CCTO)	6
2.1.2 The Origin of Dielectric Behavior of CCTO	7
2.1.3 Role of Doping	8
2.1.4 Barrier Layer Capacitors	9
2.2 Ceramic Materials	10
2.2.1 Ceramic Structure	12
2.2.2 Crystal Symmetry	13
2.2.3 Ceramics Crystalline of Partially Crystalline Materials	15
2.3 Electroceramic	15
2.3.1 Ferroelectric Ceramics	16
2.3.2 Piezeoelectric Ceramics	17
2.3.2 Pyroelectric Ceramics	18

2.4 Dielectric Strength	19
2.4.1 Intrinsic Dielectric Strength	20
2.5 Perovskite Composition	20
2.5.1 Crystallography of the Perovskite Structure	20
2.6 Solid State Reactions	21
2.7 Sintering	22
2.8 Calcinations	23
2.9 Ball Mill	23
2.10 Linear Scan Volummetry	24
2.11 X-ray Diffraction (XRD)	25
2.12 Scanning Electron Microscope (SEM)	26
2.13 Particle Analyzer	27
2.14 Lanthanum (La)	28
CHAPTER 3: METHODOLOGY	30
3.1 Introduction	30
3.2 Process Flow	31
3.3 Sample Preparation	32
3.3.1 Milling	33
3.3.2 Pressed Powders	33
3.3.3 Sintering	33
3.3.4 Soaking	33
3.3.5 Calcinations	34
3.4 Structural Analysis	34
3.4.1 Micrograph Observation	34
3.4.2 Compositions Observation	34
3.4.3 Particle Analyzer	35
3.4.4 Conductivity	35
3.4.5 Density	35
3.5 Expected Result	35

CHAPTER 4: RESULT AND DISCUSSIONS 3		
4.2 LCCTO Characterizations		
4.3 Observation on Sample Preparation Process		
4.3.1 Particle Volume Average	43	
4.3.2 Manually Hand Pressed Pellets	44	
4.3.3 Optical Microscope Observation of Green Body	46	
4.3.4 SEM Observation on Green Body	47	
4.4 Calcinations		
4.5 Sintering	52	
4.5.1 Shrinkage and Defect Observation	53	
4.5.2 Sample Observation by Using SEM	55	
4.6 Micrograph Study on SEM Image after Sintering Process		
4.7 Conductivity	65	
4.8 Density Test	66	
4.9 EDX Test on Failure Samples		
CHAPTER 5: CONCLUSION AND RECOMMENDATIONS	70	
5.1 Conclusion	70	
5.2 Recommendations	72	
REFERENCES	73	

APPENDICES

- A EDX Result
- B Gantt Chart
- C Particle Analyzer Result

LIST OF TABLES

2.1:	Pattern structure of several mineral structures	13
2.2:	Point groups for the seven crystal system	14
2.3:	Lanthanum properties	28
4.1:	Particle Size of LCCTO 0.03wt%	41
4.2:	Particle Size of LCCTO 0.05wt%	41
4.3:	Particle Size of LCCTO 0.07wt%	41
4.4:	Average particle volume 0.03wt%	43
4.4:	Average particle volume 0.05wt%	43
4.5:	Average particle volume 0.07wt%	44
4.4:	Optical Microscope observed of LCCTO on green body	46
4.5:	Calcine parameter	48
4.6:	Optical microscope morphological study on LCCTO 800°C	
	for 12h Calcination	49
4.7:	Optical microscope morphological study on LCCTO 900°C	
	for 12h Calcination	50
4.8:	Optical microscope morphological study on LCCTO 1000°C	
	for 12h Calcination	51
4.9:	Sinter parameter	52
4.10:	Shrinkage percentage of LCCTO after sintering process	54
4.11:	Conductivity Result on LCCTO	65
4.12:	EDX result on failure sample (spectrum 1)	68
4.13:	EDX result on failure sample (spectrum 2)	69

LIST OF FIGURES

2.1:	Structure of CaCu ₃ Ti ₄ O ₁₂ (CCTO)	7	
2.2:	Taxonomy of ceramics		
2.3:	Perovskite structure	20	
3.1:	Flow chart of methodology	31	
4.1:	Micrograph of the LCCTO with 0.03wt% doping percentage	37	
4.2:	Micrograph of the LCCTO with 0.05wt% doping percentage	37	
4.3:	Micrograph of the LCCTO with 0.07wt% doping percentage	37	
4.4:	The element in LCCTO composition observed with XRD		
	(a) LCCTO 0.03wt%, (b) LCCTO 0.05wt%, (c) LCCTO 0.07wt%	38	
4.5:	LCCTO powder after mixing	40	
4.6:	Green Body		
4.7:	Dimension of green body	45	
4.8:	The scanning electron microscope (SEM) of the green body		
	LCCTO 0.03wt% after the pellet pressed;		
	(a) outer surface and (b) defect on surface	47	
4.9:	Sintering profile	52	
4.10:	Defect occurred after sintering process	53	
4.11:	Doping 0.03wt%, Calcine 800°C, Sinter 1100°C, 12 hours	55	
4.12:	Doping 0.05wt%, Calcine 800°C, Sinter 1100°C, 12 hours	55	
4.13:	Doping 0.07wt%, Calcine 800°C, Sinter 1100°C, 12 hours	55	
4.14:	Doping 0.03wt%, Calcine 800°C, Sinter 1100°C, 24 hours	56	
4.15:	Doping 0.05wt%, Calcine 800°C, Sinter 1100°C, 24 hours	56	
4.16:	Doping 0.07wt%, Calcine 800°C, Sinter 1100°C, 24 hours	56	
4.17:	Doping 0.03wt%, Calcine 900°C, Sinter 1100°C, 12 hours	57	
4.18:	Doping 0.05wt%, Calcine 900°C, Sinter 1100°C, 12 hours	57	
4.19:	Doping 0.07wt%, Calcine 900°C, Sinter 1100°C, 12 hours	57	

4.20:	Doping 0.03wt%, Calcine 900°C, Sinter 1100°C, 24 hours	58
4.21:	Doping 0.05wt%, Calcine 900°C, Sinter 1100°C, 24 hours	58
4.22:	Doping 0.07wt%, Calcine 900°C, Sinter 1100°C, 24 hours	58
4.23:	Doping 0.03wt%, Calcine 1000°C, Sinter 1100°C, 12 hours	59
4.24:	Doping 0.05wt%, Calcine 1000°C, Sinter 1100°C, 12 hours	59
4.25:	Doping 0.07wt%, Calcine 1000°C, Sinter 1100°C, 12 hours	59
4.26:	Doping 0.03wt%, Calcine 1000°C, Sinter 1100°C, 24 hours	60
4.27:	Doping 0.05wt%, Calcine 1000°C, Sinter 1100°C, 24 hours	60
4.28:	Doping 0.07wt%, Calcine 1000°C, Sinter 1100°C, 24 hours	60
4.29:	Doping 0.03wt%, Calcine 800°C, Sinter 1100°C, 6 hours	61
4.30:	Doping 0.05wt%, Calcine 800°C, Sinter 1100°C, 6 hours	61
4.31:	Doping 0.07wt%, Calcine 800°C, Sinter 1100°C, 6 hours	61
4.32:	Doping 0.03wt%, Calcine 1000°C, Sinter 1100°C, 6 hours	62
4.33:	Doping 0.05wt%, Calcine 900°C, Sinter 1100°C, 6 hours	62
4.34:	Doping 0.07wt%, Calcine 900°C, Sinter 1100°C, 6 hours	62
4.35:	Doping 0.03wt%, Calcine 1000°C, Sinter 1100°C, 6 hours	63
4.36:	Doping 0.05wt%, Calcine 1000°C, Sinter 1100°C, 6 hours	63
4.37:	Doping 0.07wt%, Calcine 1000°C, Sinter 1100°C, 6 hours	63
4.38:	Sample failure at 1200°C Sintering	64
4.39:	Actual density of LCCTO for 24 hours 1100°C sintered	66
4.40:	Actual density of LCCTO for 12 hours 1100°C sintered	67
4.41:	Actual density of LCCTO for 6 hours 1100°C sintered	67

Х

LIST OF ABBREVIATIONS

CRT	-	Cathode Ray Tube
EDX	-	Energy-dispersive X-ray Spectroscopy
EIS	-	Electrochemical Impedance Spectroscopy
FCC	-	Face Centred Cubic
ILBC	-	Internal Barrier Layer Capacitors
IS	-	Impedance Spectroscopy
LCR	-	(Inductance (L), Capacitance (C), and Resistance (R))
PLZT	-	Lead Lanthanum Zircornate Titanate
PMN	-	Lead Magnesium Niobate
PZC	-	Point Zero Charge
PZT	-	Lead Zirconate Titanate
RS	-	Rochelle salt
SEM	-	Scanning Electron Microscope
XRD	-	X-ray Diffraction

CHAPTER 1 INTRODUCTION

1.1 Introduction

The introduction will slightly brief the purpose of produce Lanthanum (La) doped $CaCu_3Ti_4O_{12}$ (CCTO) powders. Methods, process and also research study in doping materials developed for La doped CCTO will also covered. In the previous research done the other researchers in produce CCTO, Calcium (Ca) is used as base material. This purpose of research studies will try to doping the base materials alternatively use La and to get a result whether dielectric materials can be produce, in other hands to get a better dielectric material than CCTO. The properties in this compound will have a differential then others doped CCTO produce with other researchers, because it depending on the parameters or doping materials state by the researcher.

Recently, the interest in produce Calcium Copper Titanium Oxide (CaCu₃Ti₄O₁₂) as new generation of ultrahigh dielectric materials was choose because of its good dielectric properties. These materials have been demonstrated to have a dielectric constants as high as $\mathcal{E} = 80,000$ for single crystal structure at room temperature and remains constant over 100 - 600K at low frequencies (Fadhlina, 2007) (Bozin *et al.*, 2004). Dielectric materials have many technological applications in electronic devices such as capacitors, resonators, and filters.

1.2 Problem Statement

Lanthanum (La) doping was introduced into CaCu₃Ti₄O₁₂ (CCTO) in order to improve the dielectric properties. Some methods in generating La doped CCTO such as wet chemistry and sol-gel has identified and studied based on microstructure development. The solid state reaction method was choose in producing La doped CCTO ceramics after agree with some researchers. Most of the reports are done on this material said, it were prepared by solid state reaction from metal oxide at higher temperature with several intermediate grinding such as by using ball milling. The reason for studying this doping is to prove that with the correct parameters, La doped CCTO can be produce and resulted in the desired formation of the nanocrystalline and eliminate the factors that may influence the unwanted phase and impurities. Solid state reaction requires tedious work, relatively long reaction times for sintering such as 1000°C overnight, 1000°C for 20 hours, 1000°C for 24 hours (Liu et. al., 2007) and high temperature conditions and still may result in unwanted phase because of limited atomic diffusion through micrometer sized grain (Sen et al., 2010). The observation on the different samples with different parameters need to be analyze by using the XRD to determine the effect of parameters using and microstructure patterns of the La doped CCTO ceramics.

The reason Lanthanum (La) use in this experiment is to have high dielectric properties similar to CCTO or could be greater. X-ray powder diffraction analysis confirmed the formation of the monophasic compound and indicated the structure to be remaining cubic with a small increase in lattice parameter with increase in La doping. A remarkable decrease in grain size from 50μ m to $3-5\mu$ m was observed on La doping. The conducting properties of grain decreased while that of the grain boundary increased on La doping, resulting in a decrease of the layer internal barrier layer effect. The doping mechanisms and the conditions under which the ceramics are processed would influence the physical properties of, particular perovskite related electroceramics (Prakash *et. al.*, 2006). Lanthanum (La) site resulted in an increase in the resistance of the grain and a decrease in grain boundary resistance, consequently a decrease in the grain boundary internal barrier layer effect (Prakash *et. al.*, 2006); Manganese (Mn) doping can suppress the dielectric permitivity in CaCu₃Ti₄O₁₂ by

up to two orders of magnitude (from 10^4 to 10^2), and the nonlinear varistor characteristics disappear completely, which should be mainly ascribed to the decrease of potential barrier height at the grain boundary and charge compensation for the conduction electrons caused by the doping (Cai *et. al.*, 2007), Eu₂O₃ doping can reduce the mean grain size and can also deter the formation of Cu-rich phases at the grain boundaries (Li *et. al.*, 2009), Zircornium (Zr) substituting experimental results indicated that there is no obvious effect on microstructure characteristic (Cai *et. al.*) and several more materials such as; tin oxide (SnO₂), Nickel (Ni), Sodium (Na), Iron (Fe), Cobalt (Co).

Doping of higher charge, like a La ions, enhance domain wall mobility and result in improved remaining polarization, coupling factors, dielectric constants, dielectric loss tangent and increased of optical transparency of electrically material. The measurement and characterization results of stoichiometric CCTO clearly indicated that the dielectric properties, evolution of secondary phases, and microstructures were strongly dependent upon the processing parameters (Kwon, 2008). Characterization of the Lanthanum (La) doped ceramics with XRD and SEM showed average grain sizes 1-2 μ m, indicating La amount to have little impact on grain size. Compared with CCTO, La doped CCTO showed a flatter dielectric constant curve related to frequency, it was found that the loss tangent of the ceramics composition of La_{(2/3)x}Ca_{1-x}Cu₃Ti₄O₁₂ (LCCTO) less than 0.20 in 600x10⁵ Hz region, which rapidly decreased to a minimum value of 0.03 by La doping with 0.05wt%. The ε_{max} value became considerably high, which was almost higher than that of sample with 0.00wt%. The curves about ε values of samples with 0.05 - 0.15wt% were fairly flat while the curves of 0.20wt% and 0.00wt% were much steeper (Patra, 2009).

1.3 Objective

The focus in this research is in producing $La_{2/3}CaCu_3Ti_4O_{12}$ (LCCTO) powder via solid state reaction technique and the effect of doping materials. The study of this research covered the parameters involves, microstructure and optimizing the phases and composition develop. Therefore the main objectives in this research are;

- i. To determine the suitable composition (wt%) for La doped in $A'CaCu_3Ti_4O_{12}$.
- ii. To analyze the effect of calcinations temperature for La doped $A'CaCu_3Ti_4O_{12}$ phases.
- iii. To optimize the sintering temperature and soaking time for optimum parameter La doped A'CaCu₃Ti₄O_{12.}

1.4 Scopes of the Study

The scopes of the study will divide into three major difficulties that are;

Part A (To determine the suitable composition (wt%) for La doped in A'CaCu₃Ti₄O₁₂),

Part B (To analyze the effect of calcinations temperature for La doped A'CaCu₃Ti₄O₁₂ phases),

Part C (To optimize the sintering temperature and soaking time for optimum parameter La doped A'CaCu₃Ti₄O₁₂).

1.5 Research Methodology

In part A, different weight percentage; 0.03 wt%, 0.05 wt%, 0.07 wt% of doping material in mixed powders were determine the properties present in the specimen in a goal to have a dielectric behaviour as CCTO ceramics. The stoichiometric amount of powder will be well-mixed by using ball mill for 12 hours in stainless steel ball as medium to have nanocrystalline powder with expected size ranges from 82 μ m - 101 μ m with an average grain size of 5 μ m for 12 hours (Ismayadi *et. al.*, 2009) of milling to obtain the single phase of CCTO, the grain size can be determine by using particle analyzer. The theoretical combinations of doping have been investigated to modify the composition.

For part B, the mixed powder then calcine at temperature determine at 1200°C for 12 hours to produce single phase CCTO (Patra, 2009). The temperature of calcination was chosen high enough to cause complete reaction. The objective of choosing calcinations temperature and suitable soaking time is to develop perovskite structure without any additional element. The composition represent in the powder is observed using X-ray diffraction (XRD) to determine the compositions develop, while scanning electron microscope (SEM) is use to inspecting micrographics and phases of samples.

In part C, the calcinations powders were press manually with hydraulic press at 214.5kN/m² equally to 2 ton/inch² to the pallet type specimen with the determine thickness as 0.4mm to 0.5mm. The pallet will be sinter at various temperatures 1100°C and 1200°C for 12 hours; an adequate temperature for sintering and times obtain the desire microstructure and dielectric properties. The increasing of the sintering temperature enhances the density of the specimen. The necessary soaking time between 6 hours to 12 hours are done for each specimen. At the final process, the entire specimen will undergo the X-ray diffraction (XRD) and scanning electron microscope (SEM) analysis to determine and analyze the changes happen to the heat treatment applied to the specimens. Linear Scan Volummetry will be use to measure the resistivity and conductivity for each specimen to improve that the specimen are conductive and able to hold charge as from early study of its dielectric properties.

CHAPTER 2 LITERATURE REVIEW

2.1 Introduction

This chapter reviews related study done the researcher in producing electroceramics through solid state reaction method. This literature reviews are mainly focused in the material selection for the doping and its parameters significant to achieved perovskite structure and high electric permittivity. The effect of suitable composition will be further reviewed based on the doped material. Electroceramics can now broadly describe that ceramic material have been specially formulated for specific electrical, magnetic or optical properties. A new generation in electroceramics can be used to obtain composite with the better performance indispensable dielectric properties for modern electronic devices. In general, these compounds belong to perovskite structure where high electric permittivity is always associated with ferroelectric or relaxor properties (Sen *et al.*, 2010). Ceramic materials and single crystals showing ferroelectric behaviour are being used in many applications in electronics and optics. A large number of applications of ferroelectric ceramics also exploit properties that are an indirect consequence of ferroelectricity, such as dielectric, piezoelectric, pyroelectric and electro-optic properties (Ahmad *et al.*, 2000).

2.1.1 Structure of CaCu₃Ti₄O₁₂(CCTO)

A great challenge in produce microelectronic is to decrease the size of the component and yet gain its potential than the components or materials discovered before turns it into the highly suitable materials to use widely in technological applications. The CCTO ceramics considerable as ferroelectric perovskite oxide ceramics has the isometric structure with cubic space group *lm3* (Fadhlina, 2007).

Figure 2.1: Structure of $CaCu_3Ti_4O_{12}$ CCTO showing tilted oxygen octahedra. White, light, dark, and black atoms are O, Ca, Cu, and Ti, respectively. Dashed lines indicate 40-atom primitive cell of antiferromagnetic spin structure (He *et. al.*, 2002)

Its structure can be derived from the ideal cubic perovskite structure by superimposing a body centred ordering of Calcium (Ca) and Copper (Cu) ions and a pronounced tilting of the titanium centred octahedral (tilt system $a^+a^+a^+$) can be interpreted in the terms of lattice modes (Bozin *et al.*, 2004).

2.1.2 The Origin of Dielectric Behaviour of CCTO

The CCTO ceramics is so called the giant dielectric permittivity value that is mostly temperature impendence (Barbier *et al.*, 2009). The main focus has been on perovskite based ferroelectric materials, owing to their high intrinsic dielectric constant originating from the polar polarization in addition to the electronic and ionic polarization. However, the dielectric properties of these materials are strongly

temperature dependent and undergo a maximum in the vicinity of the ferroelectric to paraelectric transition temperature. The microstructure and impedance characteristic of CCTO were found strongly dependent on the sintering conditions. CCTO is a property that could make the material ideal for use in capacitors. CCTO ceramics are constituted of semi-conducting grains (pure CCTO phase) and insulating grain boundary layers. Most of the investigation into CCTO, after its dielectric properties were initially reported in the year 2007, have been mainly centered around the low temperature dielectric behaviour of the material due to the dielectric anomalies that were exhibited by it in the low temperature region (Prakash *et al.*, 2007).

This stunning dielectric behaviour of CCTO is intrinsic, while other researchers claim that it arise from the internal effects such as spatial inhomogeneity in which fine particles or clusters of them are present in an otherwise homogeneous medium, contact effect and internal barrier layer capacitors (IBLC) (Sen *et al.*, 2010). The giant dielectric constants have been variously attributed to the barrier layer capacitance arising at twin boundaries, disparity in electrical properties between grain interiors and grain boundaries and, space charge at the interfaces between the sample and the electrode contacts and, polarizability contributions from lattice distortions, (V) differences in electrical properties due to internal domains, dipolar contributions from oxygen vacancies and, the role of Cu off stoichiometry in modifying the polarization mechanisms, cation disorder induced planar defects and associated inhomogeneity or nanoscale disorder of Ca/Cu substitution giving rise to electronic contribution from the degenerate e_g states of Cu occupying the Ca site contributing to the high dielectric constant. The IBLC explanation of extrinsic mechanism is comparatively widely accepted (Patra, 2009).

2.1.3 Role of Doping

The investigation in interest of using La as doping materials will be done in this research. This research is to find the effect of La doping concentration that indicates the structures of the materials and the effect in ferroelectric. By comparing a variety of study in prepared the dielectric materials, the effect of doping on various physical