"I declare that I have read this thesis and in my opinion, it is suitable in term of scope and quality for the purpose of awarding a Bachelor Degree in Electronic Engineering (Industrial Electronic)"

Signature

:600 Yew Guan

Supervisor

Date

OBSTACLE AVOIDANCE PIC MOBILE ROBOT CONTROL

MOHD AZIZULRAHMAN BIN AYUB

This Report Is Submitted Partial Fulfillment Of Requirements For The Bachelor Degree in Electronic Engineering (Industrial Electronic)

Fakulti Kejuruteraan Elektronik dan Kejuruteraan Komputer Kolej Universiti Teknikal Kebangsaan Malaysia

MARCH, 2005

"I hereby declared that this thesis is the result of my own effort except as clearly stated its references".

Signature : ayıl

: Mohd Azizulrahman bin Ayub Name

: 24/3/05 Date

Dedicated to my beloved family especially my father, brothers and sisters. Also to all my friends.

ACKNOWLEDGEMENTS

First of all, I would like to take this opportunity to thank my supervisor, Mr. Soo Yew Guan for his full support in this project. Without his support and guidance, this project will not be success. Secondly, I would like to thank fellow friends doing robotics like Isham Sahar, Fadlinasri, Easwandy, Riezzuan, and Nizam, and also my housemate for their contribution of ideas and sharing of parts and components to ensure the success of this project. Last but not least, to all people who in one way or another contribute to the success of this project.

Thank you very much. Your sincere help will be remembered for life.

ABSTRACT

This project proposes to the problem of collision avoidance for mobile robots. The project is about mobile robot that can detect obstacles. The model-based on ultrasonic sensor, to generate collision-free motion. It should be detect obstacles before collision occurs. After that, the robot turns to the left or right. Obstacle mobile robots may need to carry out missions in hazardous or populated environments. A typical application is to assist human beings in indoor environments, like offices, homes and etc. This project use PIC Microcontroller to control the robot. Through of PIC, we can do program to control the robot by using a computer programming. After the programming done, all the data is transferred to PIC.

ABSTRAK

Projek ini dicadangkan untuk mengatasi masalah pelanggaran yang berlaku pada robot bergerak. Projek ini adalah berkenaan robot bergerak yang boleh mengesan halangan. Ia menggunakan pengesan ultrasonik supaya tidak berlaku perlanggaran. Ia sepatutnya boleh mengesan halangan sebelum berlanggar atau bersentuh dengan halangan. Selepas itu, robot akan bergerak ke kiri atau ke kanan berdasarkan kedudukan halangan tersebut.Robot pengesan halangan selalunya diperlukan untuk melakukan tugas-tugas bahaya atau pada persekitaran yang berbahaya. Di samping itu, ia boleh membantu manusia untuk melakukan tugas seharian di rumah, pejabat, kilang dan sebagainya. Projek ini menggunakan PIC Pengawal Mikro untuk mengawal pergerakan robot. Melalui PIC Pengawal Mikro, kita boleh membuat program untuk mengawal robot dengan menggunakan bahasa computer. Selepas itu, semua data tadi bolehlah dipindahkan ke dalam PIC Pengawal Mikro untuk digunakan pada robot.

CONTENT

CHAPTER	TITI	LE	PAGE
	TITI	LE OF PROJECT	i
	ACK	NOWLEDGE	ii
	DED	ICATION	iii
	ACK	NOWLEGEMENT	iv
	ABS	TRACT	v
	ABS	TRAK	vi
	CON	TENTS	vii
	LIST	OF FIGURE	xii
	LIST	xiii	
	LIST	xv	
	LIST	OF APPENDIX	xvii
I	BAC	KGROUND	
	1.1	INTRODUCTION	1
		1.1.1 Robot	1
		1.1.2 Mobile Robot	3
	1.2	OBJECTIVE OF PROJECT	4
	1.3	SCOPES OF WORK	5
	1.4	PROBLEM STATEMENTS	5
	1.5	REPORT STRUCTURE	6

II LITERATURE REVIEW

2.1	INTR	INTRODUCTION			
2.2	WHA	WHAT IS A MICROCONTROLLER			
2.3	WHY	WHY USE A MICROCONTROLLER			
2.4	PIC N	MICROC	CONTROLLER	10	
2.5	PIC1	6F84A M	IICROCONTROLLER	11	
	2.5.1	Memor	y	12	
		2.5.1.1	Flash Program Memory	13	
		2.5.1.2	EEPROM Data Memory	13	
		2.5.1.3	Data RAM (SRAM)	14	
	2.5.2	Timer		14	
		2.5.2.1	Timer0	14	
	2.5.3	RS-232	Communication	15	
	2.5.4	Power S	Supply	15	
	2.5.5	Clock C	Oscillator	16	
2.6	ULTI	RASONI	C SENSOR	16	
	2.6.1	How Ul	trasonic Work	17	
	2.6.2	Selectio	n of Ultrasonic Sensor	19	
	2.6.3	Fundam	ental Ultrasonic Properties	20	
		2.6.3.1	Sound Wave Propagation Speed		
			in the Air	20	
		2.6.3.2	Attenuation of Sound as a		
			Function of Frequency and		
			Humidity	21	
		2.6.3.3	Background Noise	21	
		2.6.3.4	Effects of Frequency, Distance		
			and the Transmission Medium on		
			the Magnitude of Sound Pressure	22	
2.7	DC M	IOTOR		23	
	2.7.1	Why Do	C Motor	23	
	2.7.2	Introduc	etion of DC Motor	23	
	2.7.3	Rotating	g Machine Theory	25	
	2.7.4	E.M.F a	nd Torque Equations	26	

		2.7.5	Direct Current Motors	28
		2.7.6	Equations of the Direct Current Motor	31
		2.7.7	Twin Motor Gearbox	32
Ш	HAR	RDWAR	E DEVELOPMENT	
	3.1	INTR	ODUCTION	34
	3.2	CIRC	UIT DESIGN AND CIRCUIT	
		EXPL	AINATION	34
		3.2.1	PIC Circuit	34
		3.2.2	Motor Circuit	36
		3.2.3	H-Bridge Circuit	36
			3.2.3.1 How H-Bridge Working	37
		3.2.4	Ultrasonic Circuit	39
			3.2.4.1 Transmitter Section	39
			3.2.4.2 Receiver Section	40
		3.2.5	Relay	41
	3.3	SCHE	CMATIC DIAGRAM	43
		3.3.1 A	An Overview	43
		3.3.2 \$	Schematic Diagram	45
	3.4	PCB I	LAYOUT	45
		3.4.1 A	An Introduction to the OrCAD Layout Plus	47
	3.5	PCB I	FABRICATION	48
	3.6	SOLD	DERING PROCESS	50
IV	SOF	ГWARE	DEVELOPMENT	
	4.1	INTR	ODUCTION	51
	4.2	PROC	GRAMMING STRATEGY	51
	4.3	THE (COMPILER	53
	4.4	PIC P	ROGRAMMING OVERVIEW	53
	4.5	SOFT	WARE AND HARDWARE	53

	4.6	PIC B	ASIC PRO COMPILER	54
		4.6.1	High Pin	55
		4.6.2	Low Pin	55
		4.6.3	Input Pin	56
		4.6.4	Output Pin	57
		4.6.5	Pause Period	57
		4.6.6	PauseUs Period	58
	4.7	ADVA	ANTAGES OF PIC BASIC PRO	
		COM	PILER	59
	4.8	MICR	OCODE STUDIO	59
	4.9	HOW	TO USE MICROCODE STUDIO	60
		4.9.1	Step 1: Writing Code(Basic Program)	60
		4.9.2	Step 2: Using the Compiler	63
			4.9.2.1 Target Processor	63
			4.9.2.2 Compile "F9"	63
		4.9.3	Step 3: Programming the PIC Chip	64
	4.10	IC-PR	OG SETTING PROCEDURE	65
		4.10.1	Selecting Device	65
		4.10.2	Selecting Programmer	66
		4.10.3	Option Setting	67
		4.10.4	Oscillator Setting	69
		4.10.5	Fuse Setting	69
		4.10.6	Verify Programming Setting	69
V	FINDI	INGS A	AND ANALYSIS	
	5.1	INTR	ODUCTION	71
	5.2	ANAL	YSIS	71
		5.2.1	Distance Detection	72
		5.2.2	Size Object can be Detected by Ultrasonic	72
		5.2.3	Height can be Detected from Flour	73
	5.3	FINDI	ING	73
		5.3.1	In Ultrasonic Sensor Circuit	73

			5.5.1.1	waveform at PIN 8 of IC1	13
			5.3.1.2	Waveform at Capacitor (C5)	74
			5.3.1.3	Waveform at PIN 14 of IC1	75
			5.3.1.4	Waveform at PIN1 of IC1	75
			5.3.1.5	Waveform at PIN 6 of IC1	76
		5.3.2	In H-Br	idge Circuit	76
			5.3.2.1	Waveform at Base Lead of	
				Darlington Transistor	76
				,	
VI	DIC	USSION	, RECO	MMENDATION AND	
	CON	CLUSI	ON		
	6.1	INTR	ODUCT	ION	77
	6.2	DISC	USSION		77
	6.3	RECO	OMMEN	DATION	78
		6.3.1	Detect s	mallest obstacles	79
		6.3.2	Display	distance of obstacles	79
		6.3.3	Adjustal	ble frequency	79
		6.3.4	Use mor	re sensors	79
		6.3.5	Use serv	vomotor	80
	6.4	CON	CLUSIO	N	80
	REF	ERENC	ES		81
	APP	ENDIX			83

LIST OF TABLE

NUMBER	TITLE	PAGE
2.1	Some 8-bit Microcontrollers and Their Features	10
2.2	The Speed of Sound at Each Temperature	20
3.1	Switch Function	38
3.2	Process of OrCAD Layout	48
5.1	Distance can be detected by Ultrasonic	72
5.2	Size Object can be detected by Ultrasonic	72
5.3	Height can be detected from Flour	73

LIST OF FIGURE

NUMBER	TITLE	PAGE
1.1	Robot Compared to Human	2
1.2	Basic Robot Block Diagram	3
2.1	Pin Diagram of PIC16F84A	11
2.2	Stack PIC 16F84A Program Memory Map and Stack	12
2.3	The 40KHz Ultrasonic Sensor	17
2.4	Ultrasonic Operation	18
2.5	DC Motor	23
2.6	The Armature (Rotor) of DC Motor	24
2.7	The Stator	24
2.8	The Effect of Conductor Current	25
2.9	Separately Excited DC Motor	28
2.10	Shunt Wound DC Motor	29
2.11	Series Wound DC Motor	29
2.12	No Load Characteristics of a Separately Excited	
	Generator	30
2.13	Twin-motor Gearbox	32
3.1	PIC Circuit	35
3.2	Motor Block Diagram Circuit	36
3.3	H-Bridge Circuit	36
3.4	All Switch Open	37
3.5	Switch S1 and S4 are Closed	38
3.6	Switch S2 and S3 are Closed	38
3.7	Ultrasonic Block Diagram Circuit	39

3.8	Transmitter Section Block Diagram for Ultrasonic	39
3.9	Transmitter Section for Ultrasonic	39
3.10	Receiver Section Block Diagram for Ultrasonic	40
3.11	Receiver Section for Ultrasonic	40
3.12	Connecting a Relay to the Microcontroller via	
	Transistor	42
3.13	Connecting the Optocoupler and Relay to a	
	Microcontroller	43
3.14	The Processing of PCB Design using Capture CIS	46
3.15	Layout's Overall Design Process	47
3.16	Manufacturing Process Chart of a Single-sided PCB	49
4.1	Programming Flow Chart	52
4.2	MicroCode Studio Environment Page	61
4.3	Connection between the PC (software) and Hardware	
	(JDM Programmer)	64
4.4	JDM Programmer	65
4.5	IC-Prog Menu	66
4.6	Programmer Setting Menu	67
4.7	First Option Setting	68
4.8	Second Option Setting	68
4.9	Verify Programming Setting	70
5.1	No Moving Object	73
5.2	Moving Object Detected	73
5.3	Signal Reflected from TD2 and Amplified by Q2	74
5.4	Original Envelope Signal Extracted from R14, D5, C8	
	and R13	74
5.5	Envelope Signal after Amplified by A2	75
5.6	Envelope Signal is converted to Square Waveform	
	by A3	75
5.7	Envelope Signal is converted to DC Voltage	
	by C12, D3, D4, C3 And R20	76
5.8	Waveform at Base Lead of Darlington Transistor	76

LIST OF ABBREVIATION

ADC - Analog to Digital Converter

ASM - Assembler

B - Byte

CAD - Computer-Aided Design

CADD - Computer-Aided Design Directories

CCP - Compression Control Protocol

CD - Compact Disc

CIS - Component Information System

C-MOS - Complementary Metal Oxide Semiconductor

CPU - Control Processing Unit

dB - Decibel

DC - Direct Current

DIP - Dual-in-line Package

DOS - Disk Operating System

EEPROM - Electrically Erasable Programmable Read Only Memory

FF - Flip-flop

Gnd - Ground

H - High

Hex - Hexadecimal

Hz - Hertz

IC - Integrated Circuit

IDE - Integrated Development Environment

I/O - Input/Output

LED - Light Emitting Diode

Lib - Library

LSI - Large Scale Integration

MCU - Microcontroller Unit

MPU - Microprocessor Unit

NOP - No Operation

Pa - Pascal

PCB - Printed Circuit Board

PIC - Peripheral Interface Controller

PWM - Power Width Modulation

RAM - Random Access Memory

RC - Resistor Capacitor

Rx - Receiver

Sec - Second

RISC - Reduced Instruction Set Computer

SFR - Special Function Register

SCI - Scalable Coherent Interface

SPI - Serial Peripheral Interface

SR - Set Reset

SRAM - Static Random Access Memory

SPL - Sound Pressure Level

TMR - Timer

TTL - Transistor-Transistor Logic

Tx - Transmitter

UART - Universal Asynchronous Receiver/Transmitter

UV - Ultraviolet

V - Voltage

VLSI - Very Large Scale Integration

WIN - Window

LIST OF APPENDIX

NUMBER	TITLE	5.	PAGE
A	Datasheet 16F84A		84
В	Advantages of PIC Microcontroller		87
C	Special Function Register		89
D	Speed of Sound for Various Gases		90
E	PIC Basic Pro Commands		91
F	Combination Circuit for PIC Controller and H-Bridge		94
G	Ultrasonic Sensor Schematic Circuit		95
Н	Layout for Ultrasonic Circuit		96
I	Programming for PIC Controller using PIC Basic Pro		97

CHAPTER I

INTRODUCTION

1.1 INTRODUCTION

This chapter will discuss on the term robots. What is a robot? Types of robots that have been built and its usage. Why building a obstacle avoidance mobile robot? This question will be discussed in details. The objectives of project, and a brief review on some of the robots built worldwide will also be presented.

1.1.1 Robot

There are many definitions of robots. It seems to be of difficulty to suggest an accurate meaning for the word robot, that there are various definitions of this word, different according to the points of view. Some view a robot through the aspect of reprogrammability while others more concern on the manipulation of the robot, behavior, intelligence and so on.

The British Robot Association (BRA) defines robot as:

"A programmable device with a minimum of four degrees of freedom designed to both manipulate and transport parts, tools or specialized manufacturing implements through variable programmed motion for the performance of the specific manufacturing task" [1].

The Robotic Institute of America, on the other hand defines the robot as:

"Reprogrammable multifunctional manipulator designed to move material, parts, tools or specialized devices through variable programmed motion for the performance of a variety of tasks." [2].

Based on the definition of robot by the two institute, it can be concluded that a robot must be an automatic machine and be able to deal with the changing information received from the environment.

Generally, robots have three main parts known as processor, sensor and motor control system. If robot is replaced by human sensor is represented eye, controller is represented brain and actuator is represented leg.

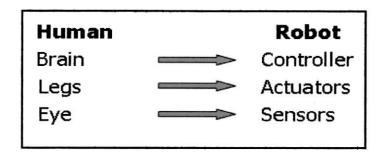


Figure 1.1 Robot Compared to Human

CONTROL SOFTWARE OBSTACLE SENSORS MOTOR CONTROL SYSTEM

Figure 1.2: Basic Robot Block Diagram

Figure 1.2 shown a basic robot block diagram consist three main parts. A three main parts are sensor, processor and motor control system. Processor will send a message to sensors detect an obstacle. When sensor detected an obstacle it will send back a message to processor. Processor will give the instruction to motor for avoid an obstacles. After that, motor run forward.

1.1.2 Mobile Robot

Basically, robots can be classified in to two categories that are fixed robot and mobile robot. Fixed robot is a robot mounted on fixed surface and the working materials are brought to the work space. A mobile robot moves from one place to another to do their task. The mobility of a robot is the robot's capability to move from one place to another in unstructured environments to a desired target. [1]. Mobile robots may further categorize into wheeled, tracked or legged robot.

Mobile robots are mostly used in difficult task and dangerous environment such as bomb defusing. Besides that, mobile robots are also used in manufacturing area and agriculture related activity such as in placing the seeds in the soil and fruit harvesting. Mobile robots may be used in houses to take care for the elderly and doing household chores.

1.2 OBJECTIVE OF PROJECT

To built a prototype of mobile robot model-based on ultrasonic sensor, to generate collision-free motion. It should be detect obstacles before collision occurs. After that, the robot turns to the left or right.

The objectives of this project:

- i) To study how obstacle detection mobile robot operation.
- ii) To study the ultrasonic sensors and their operation procedure.
- iii) To design complete set of mobile robot with obstacle detection.
- iv) To understand the operation of DC motor.
- v) To study about programming using PIC micro-controller.

1.3 SCOPES OF WORK

As we are concern with scopes of work while doing the project, so it must be create properly. There must be a guideline, in which the student should attain, but yet never go beyond is as to fulfill the requirement of the project. A Scope of work as listed below

Identify the suitable PIC Microcontroller
Develop an algorithms for robot movement
Develop programming from source code
Design the circuit for robot and ultrasonic sensor
Transfer schematic & making PCB
Make a prototype of obstacle avoidance mobile robot

1.4 PROBLEM STATEMENT

Nowadays, obstacles avoidance robots usually make collision with an object before turn around. The collision can damage the robot or component inside. So, to make sure the robot not damage because of collision, the ultrasonic sensor for obstacle detection can be performs.

Obstacle mobile robots may need to carry out missions in hazardous and/or populated environments. Example if we want to clean up a nuclear logy, we need the robot to check whether it thoroughly clean or not. Obstacle robot with nuclear detection sensor is needed to do this task. Besides, a typical application is to assist human beings in indoor environments, like offices, homes and other places or buildings.

1.5 REPORT STRUCTURE

In chapter 1, is discussed on the term robots. What is a robot? Types of robots that have been built and its usage. Why building a obstacle avoidance mobile robot?

This question will be discussed in details in this chapter. The objectives of project and a brief review on some of the robots built worldwide will also be presented in this chapter.

Chapter 2 is mentioned about literature review. When doing a project, literature review is important to choose the best microcontroller, motor and sensor. After is done, I decide to use PIC Microcontroller, DC Motor and Ultrasonic Sensor in my project. The reason why I choose all of them and the theory is discussed below.

In chapter 3, to complete the project prototype model, project methodology was an important part which it shows the work procedure. Project methodology will created to make the time table for the overall project flow jobs. Without this procedure, this project will not ending completely.

Methodology is divided in two parts, hardware development and software development. Basically, this chapter discuss on hardware development, which involves circuit design, circuit testing, troubleshooting and PCB fabrication. First of all, we take a look to the circuit explanation. For software development is discussed in chapter 4.

In chapter 4, discuss about the software used to write the program and the software used to program the PIC Microcontroller. Also discuss about software used to simulate a circuits and software used to design a circuits.

Chapter 5 is discussing about analysis and finding from the project. In this project major analysis is made on ultrasonic sensor and H-Bridge circuit.