"I declare that I have read this thesis and in my opinion, it is suitable in term of scope and quality for the purpose of awarding a Bachelor Degree in Electronic Engineering (Industrial Electronic)"

Signature

: Mrs. Mardiana Bin Bidin

Supervisor

Date

30/3/2005

THE DESIGN OF SMART BATTERY CHARGER WITH DISPLAY

HAFIZUL EFFENDI BIN MAHADI

This Report is Submitted In Partial Fulfillment Of Requirements For The Bachelor Degree Of Electronic Engineering (Industrial Electronic).

Fakulti Kejuruteraan Elektronik dan Kejuruteraan Komputer Kolej Universiti Teknikal Kebangsaan Malaysia

March 2005

"I hereby declared that this thesis titled "SMART BATTERY CHARGER WITH DISPLAY" is the result of my own effort except as clearly stated in references the source of reference".

Signature

Author

: Hafizul Effendi bin Mahadi

Date

: 30/3/2005

Dedicated to my beloved family especially my mother and father

ACKNOWLEDGEMENTS

I would like thank all of the people who helped to make this project a reality, especially my supervisor Mrs. Mardiana Binti Bidin who shares her time and attention to make sure my project is done with success. I would like to acknowledge the contributions of my colleagues at Kolej Universiti Teknikal Kebangsaan Malaysia (KUTKM), who contributed to this project. Without their support this project may have not came to fruition. Those who contributed to this project required special thanks here. The continued support through all phases of this project by the Faculty of Electronic and Computer Engineering and Prof. Abdul Hamid Hamidon, Dean, was invaluable for the completion of this work. I also would like to express my appreciation to my parent, who gave full executive support to the whole project. There are other thank; namely those with whom I did not have the pleasure of interacting personally, but whose contributions are extremely valuable, nevertheless.

ABSTRACT

This project proposes to build a prototype of an automatic battery charger better than the battery charger in the current market. Nowadays, battery has been the most important product to be used in the portable product. The new battery needs the tickle-charge features to extend it life span. The normal chargers do not have these features. This battery charger projects have display, sensor, timer and discharging function for the NiCd (Nickel Cadmium) and the tickle charge for the NiMH (Nickel Metal Hydrate) battery. This project consists of 7 parts. There are the power supply, display, current switching, cell selector, temperature sensor, discharge switch and the charger controller. This smart charger battery is suitable for commercial use because of it low cost budget. The charger can give the battery a longer life span and prevent it from overcharging or leaking. A specific integrated circuit shall be use in the circuit as a charger controller to get the best result in the charger timing and controlling. This project is able to charge the NiCd and the NiMH battery with display to show the current charging status and have the timer to give it a longer life span battery. It also features with the charging rate selection to suite the best result for a certain standard of batteries. The charger also is able to cut the charging time to 4 hours only.

ABSTRAK

Projek ini bertujuan untuk membina sebuah prototaip pengecas bateri automatik yang lebih baik dari pengecas bateri yang ada di pasaran. Masa kini, bateri telah menjadi salah satu daripada produk yang penting digunakan dalam produk mudah alih. Pengecas bateri baru memerlukan kelebihan cas-detik untuk memanjangkan jangkahayat bateri dimana pengecas bateri biasa tidak mempunyai kelebihan ini. Projek ini ialah pengecas bateri yang mempunyai paparan, pemasa, dan fungsi discas untuk bateri NiCd (Nickel Cadmium) dan cas-detik untuk bateri NiMH (Nickel Metal Hydrate) . Projek ini terbahagi kepada 7 bahagian. Ia adalah bekalan kuasa, pengawal arus pengensuisan, pemilih sel, pengesan suhu, suis discas dan pengawal pengecas. Pengecas bateri bijak ini sesuai untuk kegunaan komersil kerana kos yang rendah. Pengecas ini boleh memanjangkan jangkahayat bateri dan mengelakkan daripada "terlebih-cas" dan "bocor". Satu litar terkamil digunakan dalam litar sebagai pengawal pengecas untuk mendapatkan penyelesaian yang terbaik dalam pemasaan pengecasan dan tujuan pengawalan. Hasil daripada projek ini dapat mengecas bateri NiCd dan NiMH dan mempunyai paparan untuk memaparkan status semasa serta mempunyai pemasa untuk mengira masa pengecasan untuk memanjangkan jangkahayat bateri. Ia juga mempunyai kelebihan untuk memilih kadar pengecasan yang sesuai mengikut piawaian bateri.Pengecas ini juga dapat menjimatkan masa pengecasan kepada 4 jam sahaja.

CONTENTS

CHAPTER	TITI	LE	PAG	GE
	PRO	JECT TITLE		i
	DECLARATION			ii
	DED		iii	
	ACKNOWLEDGEMENT			iv
	ABS	TRACT		v
	ABS	TRAK		vi
	CON		vii	
	TAB	LE LIST		xii
	FIGU	URE LIST		xiii
	ABR	EVIATION		xv
	APP	ENDIX LIST		xvi
I	INTI	RODUCTION		
	1.1	BACKGROUND		1
	1.2	OBJECTIVE		4
	1.3	PROJECT SCOPE		4
	1.4	PROJECT METHODOLOGY		5
	1.5	PROJECT OVERVIEW		9
п	LITE	ERATURE REVIEW		
	2.1	INTRODUCTION		10
	2.2	RECHARGABLE BATTERY		10
		2.2.1 Introduction		10

	2.2.2	Advantages of the nickel-		11
		Metal hydrate cell		
	2.2.3	Comparison of NiMH and NiCd		12
		Cell		
2.3	THE	BQ2004 FAST-CHARGE IC		14
	2.3.1	Battery voltage and		17
		temperature measurements		
	2.3.2	Discharge-before-charge		18
	2.3.3	Starting a charging cycle		18
	2.3.4	PVD and -v termination		23
	2.3.5	Voltage sampling		23
	2.3.6	Voltage termination hold-off	24	
	2.3.7	T/t termination		24
	2.3.8	Temperature sampling		24
	2.3.9	Top-off charge		25
	2.3.10	Pulse-tickle charge		26
	2.3.11	Charge status indication		26
	2.3.12	Charge current control		26
2.4	THE I	LIQUID CRYSTAL DISPLAY (LCD)		30
	2.4.1	Type of LCD		30
	2.4.2	LCD characteristics		32
		2.4.2.1 LCD Driven		32
		2.4.2.2 Viewing angle		32
	2.4.3	Life time of LCD and backlight		33
	2.4.4	LCD turn dark when left under		34
		The sun		
2.5	SWIT	CHING POWER SUPPLY		34
	2.5.1	Buck-boost topologies		35
2.6	LOGI	C CIRCUIT		38
	2.6.1	General description		38
	2.6.2	Features		38
2.7	CHAR	RGING TOPOLOGY		40
	2.7.1	All batteries are not created		40
		equal		

viii

		2.7.2	Simple guidelines	41
		2.7.3	Charge management for NiCd	42
			and NiMH batteries	
	2.8	MICI	ROCONTROLLER	43
		2.8.1	What is microcontroller?	43
		2.8.2	Why use a microcontroller?	44
		2.8.3	PIC microcontroller	45
		2.8.4	PIC16F84A microcontroller	46
		2.8.5	Memory	47
		2.8.6	Flash program memory	47
		2.8.7	Eeprom data memory	48
		2.8.8	Peripherals	49
		2.8.9	Power supply	50
		2.8.10	Clock oscillator	50
Ш			TATION PROCESS	
	3.1		DWARE	52
		3.1.1	Power supply circuit	53
		3.1.2	Charging controller circuit	54
		3.1.3		55
			Current switching circuit	57
		3.1.5	Cell selector circuit	57
		3.1.6	Temperature detector	59
		3.1.7	Discharge circuit	60
	3.2		WARE	61
		3.2.1	The compiler	62
		3.2.2	1 6	62
		3.2.3		62
		3.2.4 3.2.5	PIC basic pro compiler Microcode studio	63
				64
		3.2.6	7 8	65
		227	program) Stan 2: using the compiler	(7
		3.2.7	Step 2: using the compiler	67

			3.2.7.1 Target processor	68
			3.2.7.2 Compile	68
		3.2.8	Step 3: programming the PIC	69
			chip	
		3.2.9	Ic-prog setting procedure	71
			3.2.9.1 Selecting device	71
			3.2.9.2 Selecting programmer	73
			3.2.9.3 Option setting	75
			3.2.9.4 Oscillator setting	77
			3.2.9.5 Fuses setting	77
			3.2.9.6 Verify programming setting	77
IV	RESU	JLT AN	ND ANALYSIS	
	4.1	INTR	ODUCTION	78
	4.2		ER SUPPLY CIRCUIT ANALYSIS	78
		4.2.1	Result of power supply circuit analysis	79
		4.2.2	Discussion on power supply circuit analysis	80
	4.3	DISPI	LAY CIRCUIT ANALYSIS	81
		4.3.1	Result of display circuit analysis	81
		4.3.2	Discussion on display circuit analysis	85
	4.4	CURI	RENT SWITCHING CIRCUIT ANALYSIS	85
		4.4.1	Result of current switching circuit analysis	86
		4.4.2	Discussion on current switching circuit analysis	87
	4.5	CELL	SELECTOR CIRCUIT ANALYSIS	87
		4.5.1	Result of cell selector circuit analysis	87
		4.5.2	Discussion on cell selector circuit analysis	88
	4.6	TEMI	PERATURE DETECTOR CIRCUIT ANALYSIS	89
		4.6.1	Result of temperature detector circuit analysis	89
		4.6.2	Discussion on temperature detector circuit analysis	90
	4.7	DISC	HARGE CIRCUIT ANALYSIS	91
		4.7.1	Result of discharge circuit analysis	91
		4.7.2	Discussion on discharge circuit analysis	92

CON	ICUSION AND SUGGESTION	
5.1	CONCLUSION	
5.2	SUGGESTION	

TABLE LIST

NO	TITLE	PAGE
1.1	Summary comparison of NiMH Application Features	13
2.1	Voltage Termination Setup	23
2.2	Fast-Charge Safety Time/Hold-off/Top-off table	27
2.3	BQ2004 LED status display options	28
2.4	LCD difference	30
2.5	LCD lifetime	33
2.6	Truth table of MM74HC154	39
2.7	Rechargeable battery topologies	40
2.8	Some 8-bit microcontrollers and their features	45
4.1	74HC154 Input and PIC Output	81
4.2	BQ2004 LED status	84

FIGURE LIST

NO	TITLE	PAGE
1.1	Graph of the standard charging phases	2
1.2	Charging-state diagram	3
1.3	PIC microcontroller programming process	5
1.4	Software use with the project	6
1.5	Important hardware for the project	7
1.6	Flowchart of the process of designing the project	8
2.1	BQ2004 Pin function	16
2.2	Temperature monitoring	20
2.3	Voltage monitoring	21
2.4	Charge cycle phases	22
2.5	State Diagram	29
2.6	Switching Topology	35
2.7	Buck-boost converter number 1	36
2.8	Buck-boost converter number 2	37
2.9	Peak voltage detection	43
2.10	ΔT/Δt Full-Charge Detection	43
2.11	Pin Diagram of PIC16F84A	46
2.12	Program memory map and stack	48
2.13	The TIMER0 feature of PIC16F84A	50
3.1	5V regulator circuits	53
3.2	AC to DC converter circuit	53
3.3	Charging controller circuit	55
3.4	Display circuit	56
3.5	Current switching circuit	57
3.6	Cell selector circuit	58

3.7	Cell selector switch cabling	58
3.8	Temperature detector circuit	60
3.9	Discharge circuit	61
3.10	Microcode studio interface	64
3.11	Write the program code in the Microcode Studio	67
3.12	Connection between PC and hardware	69
3.13	JDM programmer	70
3.14	Flowchart to select device in IC-Prog	71
3.15	IC-Prog Menu	, 72
3.16	Flowchart to select programmer in IC-Prog	73
3.17	Programmer setting menu	74
3.18	Flowchart to set the option in IC-Prog	75
3.19	First option setting	76
3.20	Second option setting	76
3.21	Verify programming setting	78
4.1	Voltage VS Process Analysis Graph for NiMH battery	79
4.2	Voltage VS Process Analysis Graph for NiCd battery	80
4.3	Tickle charging	82
4.4	Discharging	82
4.5	Pending	83
4.6	Fast charging	83
4.7	Normal charging	84
4.8	Voltage VS Process Analysis Graph for NiMH battery	86
4.9	Voltage VS Process Analysis Graph for NiMH battery	86
4.10	Battery socket connection	88
4.11	Temperature VS Process Analysis Graph for NiMH battery	89
4.12	Temperature VS Process Analysis Graph for NiCd battery	90
4.13	Time VS Process Analysis for NiMH battery	91
5.1	NTC thermistor for the temperature detector	94

ABREVIATION

PCB - Printed Circuit Board

NiMH - Nickel Metal Hydrate

NiCd - Nickel Cadmium

LCD - Liquid Crystal Display

Hex - Hexadecimal

LED - Light Emitting Diode

AC - Alternating Current

DC - Direct Current

TTL - Transistor – Transistor Logic

PIC - Peripheral Interface Controller

I/O - Input / Output

PC - Personal Computer

APPENDIX LIST

NO	TITLE	PAGE
A	Charging phase waveform	97
В	Datasheet PIC 16F84A	100
C	Powertip PC1602-F datasheet	119
D	BS170 datasheet	120
E	Charging Process diagram	122
F	2N7000 datasheet	123
G	MM74HC132 datasheet	126
Н	MM74HC154 datasheet	129
I	BC547c datasheet	133
J	Inductor designed for national's 260khz simple switcher	135
K	MTP23P06V datasheet	141
L	MTP3055VL datasheet	143
M	RFD15P05 datasheet	145
N	ZTX600 datasheet	147
O	DV2004S3 Nickel/Li-Ion Development system datasheet	149
P	Chemistry-Independent Charge Management Journal	155
Q	1N5822 datasheet	161
R	BQ2004 datasheet	163

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

This smart battery charger with display is a project which will consist of a display and a discharge function for the NiCd (Nickel Cadmium) battery type and also "pulse tickle-charge" for the NiMH (Nickel Metal Hydrate) type battery. This battery charger is divided into 7 main parts, which are the power supply, switching current control, cell selector, temperature sensor, discharge switch, and charging control. This charger is capable of extending the lifespan of the battery and prevents it from over-charging and current-leakage. An integrated circuit for the charging control is used in obtaining the best solution for the charging-time and also for the control purpose. This project also has the advantages of having the option in choosing the charging rate, accordingly to the Battery Standard.

Nowadays, there are many type of the charger in the market. The problem encountered with standard charger is it does not have an automatic "on" and "off" function when the charging process completed. It also do not have display to indicate the current process done to the battery, no discharge functions for the NiCd and no sensor to detect the battery temperature. The charging phases is also not very stable for most of the charger.

After completing the research regarding the charger in the market, the standard or basic phase of battery charging is stated in the graph below. It has 3 phases where the starting phase called Phase 0 that is the battery qualification stage. In this stage, the battery condition whether it can be charge and type of the battery is determined. On the Phase 1, the battery is charge with the maximum current. Finally, on the Phase 2 the "fast charge" activated. In this phase, the voltage is in maximum level.

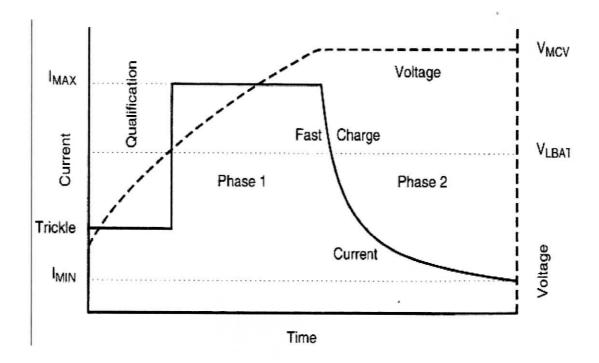


Figure 1.1: Graph of the standard charging phases.

The process of charging also can be represented in state-diagram from the power supply circuit to the pulse tickle charge circuit like below:

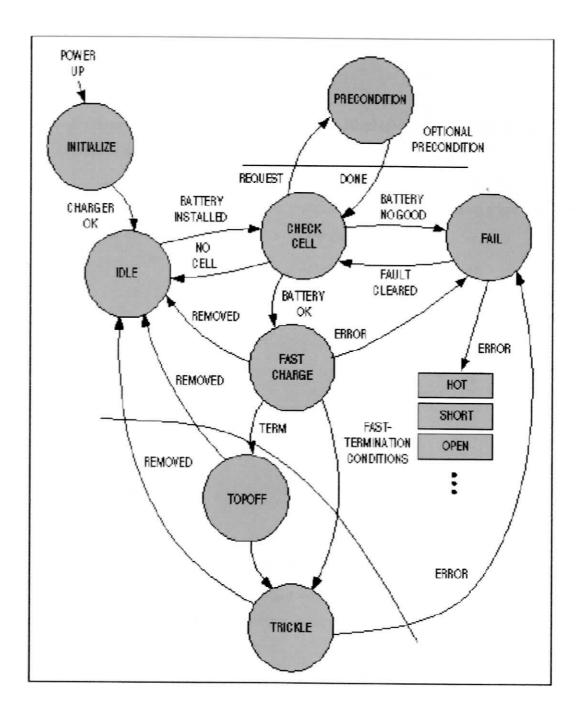


Figure 1.2: Charging-state diagram

1.2 OBJECTIVE

The objectives of this project are specified as below:

- Produce Automatic battery charger with display which indicate the current process done to the battery.
- To learn the characteristic of the rechargeable battery, charging condition for specific battery and the function of charging controller IC.
- 3. To gain knowledge in PIC microcontroller and circuit design.

1.3 PROJECT SCOPE

The project is specific to charge Nickel Metal Hydrate (NiMH) and Nickel Cadmium (NiCd) type of battery. The size of the rechargeable battery is AA Size Battery, with 1.2V Voltage. The charger has pulse tickle charge function and has LCD Display to display current process running.

1.4 PROJECT METHODOLOGY

This project divided into software application and hardware. For software application, compiler software used is The PIC Basic Pro Compiler. The programmer software used is IC-Prog. Microcode Studio used for Code Editor. Simulation software used is Proteus ISIS 6 Professional. It Have a few steps to get the machine code (Hex) for the data to program in the microcontroller that is:-

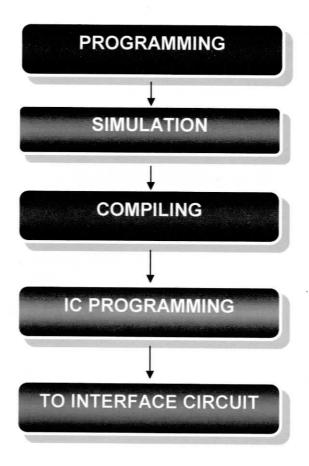


Figure 1.3: PIC microcontroller programming process.

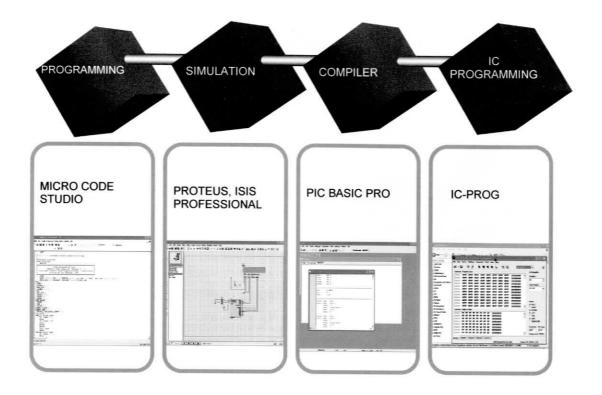


Figure 1.4: Software used with the project

Figure above is the process done with the software to get the .hex file. The hardware used with the project is the PIC microcontroller, this microcontroller design to control the display section. The charging controller IC used is specially design to control the charging process in the project. Liquid Crystal Display is to indicate the current process. JDM programmer; it is used to program the PIC microcontroller data into the FLASH memory.

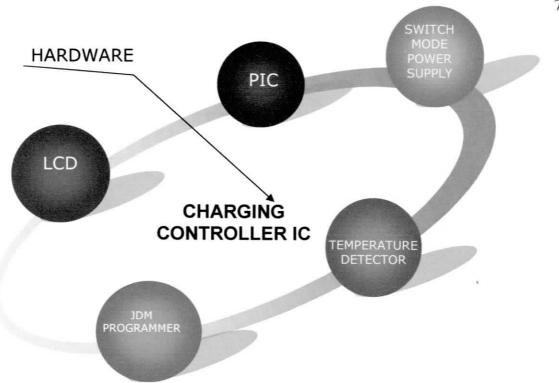


Figure 1.5: Important hardware for the project

Figure above mention a few hardware and component used to produce the project. The procedure of this project starts with the designing of the charger circuit. Then, it followed by the display circuit design. Then, the program for the display circuit created and tested with the simulation software. When the program complies with the entire requirement, then it is downloading to the IC with the JDM programmer. The completed circuit will be constructing on the "Breadboard" to test the circuit working condition. If the entire project test complied with the project specification, the project will proceed to the next stage. Finally, the last stage of the process is to create the construct the circuit on the printed circuit board (PCB).