raf

TJ223.P76 .M84 2009.

0000065860

Analyse data from Matlab and display it through 6800 microprocessor controller / Mufidah Razali.

TJ223.P76 .M84 2009.

0000065860 Analyse data from Matlab and display it through 6800 microprocessor controller / Mufidah Razali. 65860

ANALYSE DATA FROM MATLAB AND DISPLAY IT THROUGH 6800

MUFIDAH BINTI RAZALI

MICROPROCESSOR CONTROLLER

BACHELOR OF ELECTRICAL ENGINEERING (CONTROL, INSTRUMENTATION AND AUTOMATION) MAY 2009

ANALYSE DATA FROM MATLAB AND DISPLAY IT THROUGH 6800 MICROPROCESSOR CONTROLLER

MUFIDAH BINTI RAZALI

This Report Is Submitted In Partial Fulfillment Of Requirements For The Degree of Bachelor In Electrical Engineering (Control Instrumentation and Automation)

Faculty of Electrical Engineering Universiti Teknikal Malaysia Melaka

MAY 2009

SUPERVISOR'S DECLARATION

"I hereby declared that I have read through this report and found that it has comply the partial fulfillment for awarding the degree of Bachelor of Electrical Engineering (Control Instrumentation & Automation)"

Signatura :	10/2	lu	-··	
Signature :		ΛΛα2-caa	<u>سا</u>	Ibrahim
Supervisor's Name	Ne	12009		
Date :	6/3	1000		

STUDENT DECLARATION

"I hereby declared that this report is a result of my own work except for the excepts that have been cited clearly in the references."

Signature: Thath.
Name: MUFIDAH RAZALI
Date: 06/05/09

Specially dedicated to

My beloved parents, sisters and brothers.

Thank you for the endless support and encouragement

ACKNOWLEDGEMENTS

Alhamdulillah, the highest thanks to God because with His Willingness, I possible to complete the final year project in time.

I would like to express my gratitude to my dedicated supervisor, Mr Mazree bin Ibrahim for guiding this project with clarity and that priceless gift of getting things done by sharing his value able ideas as well as his knowledge.

I also like to thank to all UTEM lecturers and who had helped directly or indirectly in what so ever manner thus making this project a reality. Not forgotten are my best colleagues for their openhandedly and kindly guided, assisted, and supported and encouraged me to make this project successful.

My heart felt thanks to my dearest family which always support and pray on me throughout this project. Their blessing gave me the high-spirit and strength to face any problem occurred and to overcome them rightly.

The great cooperation, kindheartedness and readiness to share worth experiences that have been shown by them will be always appreciated and treasured by me. Once again, thank you very much.

ABSTRACT

The project is about to analysis data from MATLAB and displays it through 68kµp controller. In this project, the data get from MATLAB and display to the microprocessor output. This data can be transmit or send by using serial port and MATLAB software can be use to access the port. Before MATLAB analysis the data, it can be create by using MATLAB guide. In this project, the microprocessor 68000 circuit can be used as the hardware for this project. In this circuit has 3 part connection, first part is about power address and data bus connection. Second part is about timer, clock and control bus connection then the last part is about input and output connection. Seven segments is the output device to display the sending data. Beside that, one program will be develop by using IDE68K to move the sending data from MATLAB to microprocessor, before the data can be display to seven segments.

ABSTRAK

Sasaran projek ini adalah untuk menganalisa data dari MATLAB dan memaparkan data tersebut melalui kawalan 68000 mikropemproses. Di dalam projek ini, data akan dihantar dari MATLAB dan dipaparkan ke keluaran mikropemproses. Data tersebut akan dihantar menggunakan port bersiri dan perisian MATLAB digunakan untuk mengaktifkan port tersebut. Sebelum MATLAB menganalisa data , data tersebut hendaklah dibentuk menggunakan MATLAB GUI. Litar mikropemproses 68000 digunakan sebagai perkakasan untuk menyiapkan projek ini. Litar tersebut mengandungi tiga bahagian sambungan, sambungan pertama adalah penyambungan antara kuasa alamat dan bus data. Bahagian kedua adalah penyambungan antara timer, clock dan bus kawalan. Bahagian terakhir pula adalah penyambungan antara masukan dan keluaran. Untuk projek ini paparan tujuh ruas (seven segment) adalah kompenen keluaran yang digunakan untuk memaparkan data yang dihantar dari MATLAB. Selain itu satu aturcara dibentuk menggunakan IDE68K untuk memindahkan data dari MATLAB ke mikropemproses sebelum data dipaparkan ke paparan tujuh ruas(seven segment).

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	TITLE PAGE	i
	SUPERVISOR DECLARATION	ii
	STUDENT DECLARATION	iii
	DEDICATION	iv
	ACKNOWLEDGEMENTS	v
	ABSTRACT	vi
	ABSTRAK	vii
	TABLE OF CONTENTS	viii
	LIST OF FIGURES	xi
	LIST OF TABLES	xiii
	LIST OF ABBREVIATIONS AND SYMBOL	xiv
	LIST OF APPENDICES	xv
1	INTRODUCTION AND LITERATURE REVIEW	
	1.1 Project Background	1
	1.2 Project Objective	2
	1.3 Project Scope	2
	1.4 Problem Statement	3
	1.5 Literature Review	3
	1.5.1 Introduction	3
	1.5.2 Serial Communication	3
	1.5.2.1 Serial Port	4
	1.5.2.2 RS-232 Standard Cable	6
	1.5.3 Hardware Specification	9
	1.5.3.1 Microprocessor 68000	9
	1.5.3.2. Read Only Memory (ROM)	10
	1.5.3.3 Read Access Memory (RAM)	11

CHAPTER	TITLE	PAGE
	1.5.3.4 Decoder	12
	1.5.3.5 Tri-Buffer	13
	1.5.3.6 Latch	14
	1.5.3.7 Integrated Circuit (IC)	14
	1.5.3.8 555 Timer	15
	1.5.3.9 Crystal Oscillator	16
	1.5.3.10 Seven Segment	17
	1.5.4 Software Specification	17
	1.5.4.1 MATLAB	17
	1.5.4.2 IDE 68K Software	19
	1.5.4.3 Proteus 6.0 Professional	21
	1.6 Thesis Outline	22
2	MATERIAL ÅND METHODOLOGY	
	2.1 Title	23
	2.2 Literature Review	23
	2.3 Software Development	24
	2.3.1 MATLAB GUI	24
	2.3.2 IDE 68K	27
	2.4 Hardware Development	27
	2.4.1 Step to create PCB Layout	28
	2.4.2 Etching Process - Design PCB Board	29
	2.4.3 Troubleshoot PCB Board	30
	2.5 Analysis and Test	31
	2.6 Write Report	32
3	RESULT	
	3.1 Introduction	33
	3.2 MATLAB GUI	34
	3.3 IDE 68K	36
	3.4 Microprocessor 68000 Controller Circuit	39

CHAPTER	TITLE	PAGE
	3.4.1 Circuit Testing	45
4	ANALYSIS AND DISCUSSION	
	4.1 Introduction	46
	4.2 MATLAB GUI	46
	4.3 IDE 68K	49
	4.4 Circuit Analysis	50
5	CONCLUSION AND RECOMMANDATION	
	5.1 Conclusion	52
	5.2 Recommendation	53
REFERENCE	S	54
	`	
APPENDICES	3	
APPENDIX A	D.	55 -88
AI FENDIA A	– D	22 -00

LIST OF FIGURES

FIGURE NO	D. TITLE	PAGE	
1.1	Connection for serial communication	4	
1.2	Serial Port	4	
1.3	Pin assignment scheme for a 9-pin male connector	5	
1.4	Dialog box for serial port information in your computer	6	
1.5	RS- 232 DB9 pin out diagram	7	
1.6	RS- 232 DB25 pin out diagram	7	
1.7	RS-232 DB9 to DB25 converter connection	8	
1.8	Microprocessor 68000	9	
1.9	EPROM	10	
1.10	EPROM pin connection	11	
1.11	Pin assignment for RAM	11	
1.12	Pin assignments for decoder 74LS138	12	
1.13	Logic and connection diagram for buffer 74LS541	13	
1.14	Pin connection diagram for Latch 74HC574	14	
1.15	Pin connection diagram for IC 7407	15	
1.16	Pin connection diagram for IC 74LS04	15	
1.17	Pin connection diagram for LM 555 Timer	16	
1.18	Crystal oscillator	16	
1.19	Seven segment	17	
1.20	Guide Quick Start windows	18	
1.21	Layout Editor	19	
1.22	GUI window	19	
1.23	IDE68K window	20	
1.24	68000 Visual Simulator window	20	
1.25:	Circuit Design Shows in ISIS	21	
1.26	PCB Layout Shows in ARES	21	
2.1	Project Design Flow	24	

FIGURE NO.	TITLE	PAGE
		•
2.2	Software connection	24
2.3	GUI Figure	25
2.4	Callback function and program to activate serial port	25
2.5	Result for GUI figure	26
2.6	Illustrations for output connection for RS232 configuration	26
2.7	Result in 68000 visual simulators	27
2.8	Circuit diagram in ISIS	28
2.9	PCB layout in ARES	29
2.10	The PCB board after etching process	30
3.1	Flow chart of the project	34
3.2	Complete GUI layouts in GUI window	35
3.3	Result for load, pre-process, recognize and send out the	35
	alphabet using MATLAB GUI	
3.4	Status for communication port when push the send button	36
3.5	The assembly language	37
3.6	68000 visual simulator result	38
3.7	Circuit diagram for this project	40
3.8	Schematic Diagrams in ISIS	41
3.9	PCB layout of this project	42
3.10	Top view for double sided PCB board	43
3.11	Bottom view for double sided PCB board	43
3.12	Installation the component at PCB board	43
3.13	Front view of the hardware of this project	44
3.14	Hardware of this project	44
3.15	Hardware connected with serial port	45
3.16	Result for circuit testing	45
4.1	Function to activate serial port and send the selected	46
	alphabet	
4.2	Experiment for output connection for RS232 configuration	48
4.3	Re work the PCB board	49
4.4	Modified the IC base	50

LIST OF TABLES

TABLE NO.	TITLE	PAGE
1.1	Serial Port Pin and Signal Assignments	5
1.2	DB9 – DB25 conversion table	8
1.3	Function table for 74LS 138	13
3.1	List of component	39

LIST OF ABBREVIATIONS AND SYMBOL

Printed Circuit Board **PCB**

TIA/EIA Telecommunications Industry Association

Data Terminal Equipment DTE

Data Circuit-terminating Equipment DCE

ROM Read only memory

RAM Read Access Memory

Graphic Interface Unit **GUI**

EPROM Erasable Programmable Read-Only Memory,

Herz Hz

ultra violet UV

OTP one time programmable

MATLAB Matrix Laboratory

I/O Input output

IC Integrated Circuit

LIST OF APPENDICES

AP	PENDIX	TITLE	PAGE
	A	GANTT CHART	55
	В	MATLAB PROGRAM	56
	С	IDE 68K PROGRAM	76
	D	STEP TO DESIGN PCB LAYOUT AND PCB BOARD	81

CHAPTER 1

INTRODUCTION AND LITERATURE REVIEW

This chapter explains about the project background, problem statement, project objectives, project scopes, and thesis outline and activity flow chart. Beside that this chapter also explains the literature review of this project.

1.1 Project Background

Data analysis is the process of looking at and summarizing data with the intent to extract useful information and develop conclusions. Data analysis is closely related to data mining, but data mining tends to focus on larger data sets, with less emphasis on making inference, and often uses data that was originally collected for a different purpose [6]. Have many software can be use to analyze the data but in this project the data will be analyze by using MATLAB and display the data to 68000 microprocessor.

1.2 Project Objective

The main core of this project is to analyze the data by using MATLAB and send through to microprocessor controller. The objective of this project is:

- 1. To design or develop a program that use serial port as an output terminal.
- 2. To create the data using MATLAB GUI.
- 3. To know how to display and send the data using MATLAB software.
- To design the software for 68kµp controller circuit, that accepts the data from MATLAB software.
- 5. To design the hardware for this project

1.3 Project Scope

In order to achieve the objective of the project, there are several scope had been outlined. The scope of this project includes:

- 1. Study about MATLAB GUI
- Design the program using MATLAB GUI that create, recognize and send the alphabet to 68kµp controller circuit.
- 3. Study about Microprocessor 68000.
- 4. Design the interface program by using assembly language in IDE 68k
- 5. Study about Proteus 6.0 Professional software and design the PCB board.
- 6. Use seven segments as the output to display the selected data.

1.4 Problem Statement

This project is about to analysis data from MATLAB and displays it through 68kµp controller. Have many methods to send the data that using serial port, in this project the problem to be studied is about how to send the data using serial port with MATLAB software base on serial port specification in your computer. Beside that, the second problem will be studied is how to interface the MATLAB programming to microprocessor. In this project, have study how to using assembly language of microprocessor 68000 that translates information supplied by MATLAB then display on output devices.

1.5 Literature Review

1.5.1 Introduction

Literature review has been conducted prior to undertaking this project to obtain the information on the some component and the theory about the related software that used in this project. This chapter provides the summary of literature reviews on key topics related to this project.

1.5.2 Serial communication

Serial communication is the most common low-level protocol for communicating between two or more devices. Serial communication is popular transmitting data between a computer and a peripheral device such as a programmable instrument or another computer [3]. It can transfer data in low rates or transferring data over long distance. Base on the scope of this project, serial communication will be use to communicate the hardware device and software.

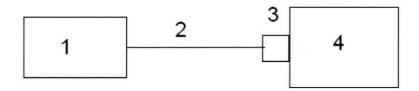


Figure 1.1 Connection for serial communication

- 1 Instrument
- 2 RS 232 cable
- 3 Serial port
- 4 Computer

1.5.2.1 Serial port

Serial port is a serial communication physical interface through which information transfers in or out one bit at a time [12]. The serial port interface for connecting two devices is specified by the TIA/EIA-232C standard published by the Telecommunications Industry Association.

Figure 1.2 Serial Port

Serial ports consist of two signal types which are data signals and control signals. To support these signal types, as well as the signal ground, the RS-232 standard defines a 25-pin connection.[3] However, most Windows platforms use a 9-pin connection. In fact, only three pins are required for serial port communications, one for receiving data, one for transmitting data, and one for the signal ground. The following diagram (Figure 2.2) shows the pin assignment scheme for a 9-pin male connector on a DTE. The pins and signals associated with the 9-pin connector are described in the following table (Table 2.1). Refer

to the RS-232 standard for a description of the signals and pin assignments used for a 25-pin connector.

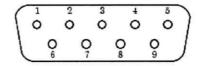


Figure 1.3 Pin assignment scheme for a 9-pin male connector

Table 1.1 Serial Port Pin and Signal Assignments

Pin	Label	Signal Name	Signal Type
1	CD .	Carrier Detect	Control
2	RD	Received Data	Data
3	TD	Transmitted Data	Data
4	DTR	Data Terminal Ready	Control
5	GND	Signal Ground	Ground
6	DSR	Data Set Ready	Control
7	RTS	Request to Send	Control
8	CTS	Clear to Send	Control
9	RI	Ring Indicator	Control

Before activate the serial port in MATLAB, have to find the serial port information in their platform. It is important because the operating system provides default values for all serial port settings. However, these settings are overridden by your MATLAB code, and will

have no effect on your serial port application.[3]. The serial port information can be access through the System Properties dialog. The step to access this on a Windows XP platform is:-

- 1. Right-click My Computer on the desktop and select Properties.
- 2. In the System Properties dialog, click the Hardware tab.
- 3. Click Device Manager.
- 4. In the Device Manager dialog, expand the Ports node.
- 5. Double-click the Communications Port (COM1) node.
- 6. Select the Port Settings tab.

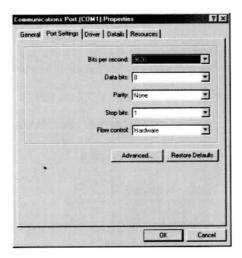


Figure 1.4 Dialog box for serial port information in your computer

1.5.2.2 RS322 Standard Cable

RS-232 (Recommended Standard 232) is a standard for serial binary data signals connecting between a DTE (Data Terminal Equipment) and a DCE (Data Circuit-terminating Equipment) [3]. It is commonly used in computer serial ports. The RS232 standard is one of the oldest physical communication standards in computer world. The standard defines low-cost serial communication in a robust way where bits are sent sequentially on a copper line. It was originally defined for connecting devices such as computers, terminals and printers to modems. This equipment is connected through their

serial port. Nowadays, the computer to computer link with a so-called null modem cable is commonly used.

The original serial port definition limited the maximum transfer speed to 20 kbps, but practice has shown that higher bandwidth is possible. To overcome these limitations, the RS232-E standard allows much higher communication speeds than its predecessor.

The RS232 connector was originally developed to use 25 pins. In this DB25 connector pin out provisions were made for a secondary serial RS232 communication channel [8]. In practice, only one serial communication channel with accompanying handshaking is present. Only few computers have been manufactured where both serial RS232 channels are implemented.

On personal computers, the smaller DB9 version is more commonly used today. The diagrams show the signals common to both connector types in black. The defined pins only present on the larger connector are shown in red. Note, that the protective ground is assigned to a pin at the large connector where the connector outside is used for that purpose with the DB9 connector version.[8]

Data carrier detect Data set ready Receive data Request to send Transmit data Clear to send AOData terminal ready Ring indicator Signal ground

RS232 DB9 pinout

Figure 1.5 RS-232 DB9 pin out diagram

Protective ground

Figure 1.6 RS-232 DB25 pin out diagram