IMPROVEMENT OF LOW PRESSURE WATER HYDRAULIC SYSTEM

MOHD SYAHIR BIN ZULKIFLI

This report is submitted in partial fulfillment of requirement for the Bachelor Degree of Mechanical Engineering (Thermal Fluid)

Faculty of Mechanical Engineering Universiti Teknikal Malaysia Melaka

APRIL 2011

C Universiti Teknikal Malaysia Melaka

"I admit to have read this report and it has followed the scope and quality in Partial Fulfillment of Requirement for the Degree of Bachelor of Mechanical Engineering (Thermal Fluid)"

Signature	:
Supervisor Name	: ENCIK FAIZIL BIN WASBARI
Date	: APRIL 2011

i

"I agree that this report is my own work except for some summaries and information which I have already stated"

Signature	:
Name	: MOHD SYAHIR BIN ZULKIFLI
Date	: APRIL 2011

Special dedication to my family, supervisor, my friends and all that help me to completely my thesis.

ACKNOWLEDGEMENT

First of all, I would like to express my gratitude to Universiti Teknikal Malaysia Melaka (UTeM), for giving me this valuable opportunity to undergo *"Projek Sarjana Muda"*. Without this opportunity, I will never gain any experience and knowledge about the works which related to mechanical engineering.

Thanks a lot also especially to my main supervisor Mr. Faizil Bin Wasbari who always guides me and teaches me in this semesters. I really appreciate the kindness of him in exposing me to the world of engineering, the duties and the responsibilities as a lecturer even though they very busy with their own work.

Furthermore, I would like to extend thank for Mr. Ikmal Hisham Bin Ibrahim@Ibrarahim, the technician of Hydraulic and Pneumatic Lab where as his gave me a lot of helps and opinion during my PSM I and PSM II. Moreover, thanks to my friends and course mate who are always willing to help me when I needed, especially Muhammad Ashraf Bin Alang Ahmad

Lastly, I will always remember all the knowledge and this great that I gained during undergo "*Projek Sarjana Muda*". Without the helps from all of them, I believe that I could not successfully accomplish my report. Thanks.

i

ABSTRACT

This thesis presents a study on Improvement of Low Pressure Water Hydraulic System. This study mainly is focuses building improvement of hydraulic power unit, improvement design of control system, fabricate improvement of water hydraulic power unit and system and performs run testing system. Otherwise, another purpose of this study is to use *FluidSIM FESTO* Software to simulate improvement of low pressure water hydraulic system. In addition, another purpose of this study is to use Programmable Logic Control (PLC) OMRON as control system for this improvement of low pressure water hydraulic system. Several testing will run to improve of low pressure water hydraulic system with explore the limitation and come out with solution to solve the problem occurs. The performance of this system will testing in terms of temperature distribution, cylinder speed, and output force cylinder testing. The result has been record and analysis to verify the ability of improvement of low pressure water hydraulic system and to make comparison with development of low pressure water hydraulic system. The results shows improvement of water hydraulic system was improve than development of water hydraulic system. Conclusion, objective of this thesis was achieved and this thesis successfully done.

ABSTRAK

Tesis ini menerangkan tentang kajian pembaikan sistem hidraulik air tekanan rendah. Kajian ini tertumpu kepada pembinaan pembaikan unit kuasa hidraulik, pembaikan mereka sistem hidraulik air, memasang unit kuasa pembaikan sistem hidraulik air dan sistem dan menjalankan kaedah ujian utuk menguji setiap sistem. Tujuan lain kajian ini untuk memggunakan perisian komputer "FluidSIM FESTO". Selain daripada itu, tujuan seterusnya kajian ini untuk menggunakan "Programmable Logic Control (PLC) OMRON" dimana ianya mengawal sistem bagi pembaikn sistem hidraulik air tekanan rendah dan digunakan secara meluas dalam industri. Beberapa ujian akan dijalankan bagi pembaikan sistem hydraulic air tekanana rendah dengan mencari had sistem hidraulik air ini dan mengatasi masalah yang berlaku. Keupayaan sistem ini akan diuji melalui ujian distribusi suhu, ujian kelajuan lejang dan ujian daya keluaran lejang. Keputusan ujian akan dicatatkan dan dianalisis bagi mengenal pasti keupayaan pembaikan sistem hidraulik air tekanan rendah dan melakukan pembandingan dengan sistem hidraulik air tekanan rendah terdahulu. Keputusan menunjukan pembaikan berjaya dilakukan dalam sistem hidraulik air yang terdahulu. Kesimpulanya, objektif tesis ini tercapai dan berakhir dengan jayanya.

TABLE OF CONTENTS

CHAPTER

CHAPTER 1

CONTENT

PAGE

4

4

	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENT	iv
	ABSTRACT	v
	ABSTRAK	vi
	TABLE OF CONTENTS	vii-xii
	LIST OF TABLES	xiii-xiv
	LIST OF FIGURES	xv-xvii
	LIST OF ABBREVIATIONS	xviii
R 1	INTRODUCTION	
1.1	Introduction	1
1.2	Objective	2

1.3	Scope	2
1.4	Problem Statement	3

CHAPTER 2	LITERATURE REVIEW
2.1	Literature Review
2.2	Analysis Development of Low

Pressure Water Hydraulic System

C Universiti Teknikal Malaysia Melaka

CHAPTER

CONTENT

PAGE

Definition of Low Pressure	9
Reverse Osmosis (RO) Water	9-10
Basic Hydraulic System and Component	11
Hydraulic Schematics Diagrams	12 - 15
Introduction of Water Hydraulic System	16
Testing of Danfoss APP 1.0-2.2 with App Pumps as	20
Water for Energy Recovery	
Robust Control of Water Hydraulic Servo Motor	21
System Using Sliding with Mode Control Distribution	
Observer	
	Definition of Low Pressure Reverse Osmosis (RO) Water Basic Hydraulic System and Component Hydraulic Schematics Diagrams Introduction of Water Hydraulic System Testing of Danfoss APP 1.0-2.2 with App Pumps as Water for Energy Recovery Robust Control of Water Hydraulic Servo Motor System Using Sliding with Mode Control Distribution Observer

CHAPTER 3 METHODOLOGY

3.1	Introduction	23
3.2	Literature Review	23
3.3	Improvement Design and Power Unit Component	24
3.4	Improvement and Testing System	24
3.5	Fabrication	24
3.6	Setup the Component	25
3.7	Run Testing	25
3.8	Data Analysis	26
3.9	Report Writing	27

ii

CHAPTER CONTENT PAGE

CHAPTER 4 SIMULATION

4.1	Introduction	30
4.2	Testing Water Hydraulic System Schematic	30
	Diagram & Hydraulic Circuit	31
4.3	Design Location for Chassis Testing Water	32
	Hydraulic System	
4.4	Simulation of Schematic Diagram	35
	by Using Hydraulic Circuits	

CHAPTER 5 PROGRAMMING

5.1	Simulation of Schematic Diagram	41
5.2	Programming of Ladder Diagram	42
	By Using Programmable Logic Control	
	(PLC) Circuits	

CHAPTER 6 IMPROVEMENT OF LOW PRESSURE WATER HYDRAULIC SYSTEM

6.1	Power Supply Units	47
6.2	Control System	53
6.3	Actuator	58

CHAPTER CONTENT PAGE

CHAPTER 7 RESULTS

7.1	Development of Low Pressure Water Hydraulic System	58
7.2	Improvement of Low Pressure Water Hydraulic System	61

CHAPTER 8ANALYSES8.1Cylinder Speed688.2Output Force75

CHAPTER 9 DISCUSSION

9.1	Internal Leakage System	81
9.2	Breakaway Pressure	82
9.3	Cylinder Speed and Output Force of Cylinder	83
9.4	Filter Installation	83
9.5	Temperature Distribution	84
9.6	Effect of Friction	85
9.7	Application of System	85

CHAPTER 10 CONCLUSION

10.1	Conclusion	86
10.2	Recommendation	88

CHAPTER	CONTENT	PAGE
REFERENCES		89-92
DIDI IOCDADUV		02
BIBLIUGKAPHY		93
APPENDICES		94

LIST OF TABLES

TABLES

TITLE

PAGES

2.1	The Pressure Range in Fluid Power	9
2.2	Percent Rejection or the Percentage of the Contaminants	10
	Removed From Water Supply	
6.1	Spray Pumps Technical Data	48
7.1	Breakaway Pressure during Extension	59
7.2	Breakaway Pressure during Retraction	59
7.3	Visual Inspection Result of Internal Leakage	59
7.4	Stroke Time for 2 bars Testing Pressure	60
7.5	Stroke Time for 4 bars Testing Pressure	60
7.6	Stroke Time for 6 bars Testing Pressure	60
7.7	Stroke Time for 8 bars Testing Pressure	61
7.8	Pressure Drop Reading	61
7.9	Breakaway Pressure during Extension	62
7.10	Breakaway Pressure during Retraction	62
7.11	Visual Inspection Result of Internal Leakage	63
7.12	Stroke Time for 2 bars Testing Pressure	63
7.13	Stroke Time for 4 bars Testing Pressure	63
7.14	Stroke Time for 6 bars Testing Pressure	64
7.14	Stroke Time for 8 bars Testing Pressure	64
7.16	Pressure Drop Reading	64
7.17	Temperature Distribution	65

i

TABLES

TITLE

8.1	Cylinder Speed for 2 bars Testing Pressure	69
8.2	Cylinder Speed for 4 bars Testing Pressure	69
8.3	Cylinder Speed for 6 bars Testing Pressure	69
8.4	Cylinder Speed for 8 bars Testing Pressure	70
8.5	Summary of Cylinder Speed	70
8.6	Cylinder Speed for 2 bars Testing Pressure	70
8.7	Cylinder Speed for 4 bars Testing Pressure	71
8.8	Cylinder Speed for 6 bars Testing Pressure	71
8.9	Cylinder Speed for 8 bars Testing Pressure	71
8.10	Summary of Cylinder Speed	71
8.11	Cylinder Speed Extension Process	72
8.12	Cylinder Speed Retraction Process	74
8.13	Dimension of Cylinder	75
8.14	Output Force of Cylinder	76
8.15	Output Force of Cylinder	76
8.16	Output Force for Extension Process	77
8.17	Output Force for Retraction Process	79

LIST OF FIGURES

FIGURES

TITLE

2.1	Leakage at Control Valve	7
2.2	Condition of Water before Testing	8
2.3	Condition of Water after Testing	8
2.4	Permeate and Concentrate Flow	10
2.5	Schematic Hydraulic Reservoir	12
2.6	Schematic Hydraulic Lines	13
2.7	Schematic Hydraulic Pump	13
2.8	Schematic Hydraulic Motor	14
2.9	Schematic Check Valve and Relief Valve	14
2.10	Schematic Control Valve and Actuators	15
2.11	Schematic Hydraulic Cylinder	15
3.3	Flow Chart of Methodology	28
4.1	Testing Water Hydraulic System Schematic Diagram &	31
	Hydraulic Circuit	
4.2	Full Assemble View of Chassis for Water Hydraulic System	32
4.3	Top View of Chassis for Water Hydraulic System	33
4.4	Side Assemble View of Chassis for Water Hydraulic System	34
4.5	Initial Position	35
4.6	Power Supply ON	36
4.7	Extending	37
4.8	Full Extend	38

FIGUES

TITLE

4.9	Retracting	39
4.10	Full Retract	40
5.1	Initial Position	42
5.2	Power Supply ON	43
5.3	Extending Process	44
5.4	Retracting Process	45
5.5	Emergency Process	46
6.1	Power Spray Pump Model	49
6.2	Reservoir	50
6.3	Blue Hose Connector	50
6.4	Polyurethane Tube	51
6.5	Filter Housing	52
6.6	Top Cover	52
6.7	Thread Filter	52
6.8	Ring Tied	52
6.9	Installation Stainless Steel Filter in Systems	53
6.10	Pressure Relief Valve	54
6.12	3/2 Way Direct Mounting Pilot Valve	55
6.13	3/2 Way Compact Control Valve	55
6.14	Directional Control Valve in Systems	55
6.15	Switch ON and OFF Button wired to PLC Box	56
6.16	Cylinder Type XXPC MALL 323000	57
8.1	Cylinder Speed versus Pressure Test (Extension Process)	73
8.2	Cylinder Speed versus Pressure Test (Retraction Process)	74
8.3	Output Force versus Pressure Test (Extension Process)	78

FIGUES

TITLE

8.4	Output Force versus Pressure Test (Retraction Process)	80
9.1	Leakage at Control Valve	82
9.2	Condition of Water before Testing	84
9.3	Condition of Water after Testing	84

LIST OF ABBREVIATIONS

PSM 1 =		Projek Sarjana Muda	
PLC	=	Programmable Logic Control	
UTeN	1 =	Universiti Teknikal Malaysia Melaka	
RO	=	Reverse Osmosis	
F	=	Force, newton	
N	=	Newton	
Р	=	Pressure, bars	
А	=	Area, m ²	
0	=	Angle, degree	
°C	=	Degree Celcius	
m	=	Meter	
b	=	Bore, m	
v	=	Speed, ms ²	
S	=	Stroke Length, m	
t	=	Time, s	
%	=	Percentages	

CHAPTER 1

INTRODUCTION

1.1 OVERVIEW

Now day, in our nature is nothing more closely associated with cleanliness, freshness, and purity. The new technology today comes out with water application in role as a power medium for hydraulic system. As the result, this system is call as Water Hydraulic System. What is an actually Water Hydraulic System? Water Hydraulic System is related with Fluid Power. "Fluid Power is a technology that deals with the generation, control, and transmission of power, using pressurized fluids". (Anthony Esposito, 7th Edition) In Fluid Power, when the fluid is a liquid is called "*Hydraulic*" and when the fluid is a gas is called "*Pneumatics*". That is why, in this case when water as liquid and used in fluid power system is called Water Hydraulic System.

Furthermore, when water is a liquid in fluid power system there are many variety of reasons the advantages of Water Hydraulic System. Firstly, as we know water based fluids are fire resistant and fireproof. Water also promotes safety in other ways with workers do not breathe harmful oil vapors or risk exposure to skin and eyes. Application of fluid power system in our life is wide. For example, Hydraulic Chain Saw can operate under high pressure to provide huge forces and torque to drive loads. It operation used hydraulic gear motor which is a flow rate range is 4 to 8 gpm and a pressure range is 1000 to 2000 psi.

1.2 OBJECTIVES

This Bachelor of Degree Project (PSM) is about the improvement low pressure water hydraulic system. The objectives of this project are as follow:

- i) To fabricate the improvement of low pressure water hydraulic system.
- ii) To conduct the experiment to test the improvement system.
- iii) To compare between improvement of low pressure water hydraulic system with development of low pressure water hydraulic system in term of cylinder speed and output force of cylinder.
- iv) To installing filter in improvement of low pressure water hydraulic system
- v) To find temperature distribution of improvement of low water hydraulic system.

1.3 SCOPES

The generally scopes of the project are as shows below:

- i) Reverse Osmosis Water (RO-Water) as fluid in hydraulic system.
- ii) Re-design the existing system by using PLC control system.
- iii) Validate the system control.
- iv) Build up a water hydraulic power unit component.
- v) Improve in low water hydraulic system :
 - 1) Install filter at output reservoir
 - Replace 5/2 way Double Solenoid Control valve with 3/2 way compact solenoid control valve with 6mm port.

1.4 PROBLEM STATEMENT

Applications of hydraulic and pneumatic systems are useful in industries. The common fluids used to transfer power in the fluid power system are oil and gas. However, with discovery of the new technology, water can also be used as a fluid used in hydraulic system. This new fluid as pressure medium has been discovered and water is a suitable medium comes along with characteristic of non toxic, nonflammable, low cost, and no adverse effect for our environment. As a result of several researches and testing, engineers have viewed water hydraulics with renewed interest with water able to be used as hydraulic fluid. Unfortunately, for hydraulic system with low pressure, it needs further development and testing is required to verify the problem occurs when using water as a fluid.

CHAPTER 2

LITERATURE REVIEW

This chapter is presentation the review of low water hydraulic system literature which consists of several numerous studies from the past and presents. Nevertheless, basic theories of fluid power system will be presented in this chapter. These study are features the theories that are explained and analyze the application and phenomena of hydraulic system and low pressure fluid power system.

2.1 LITERATURE REVIEW

The studies on the related literature of Low Pressure Water Hydraulic System that have been published on a research will be presented in this section. All sources from various journal, references books and technical paper have been studied to understand the topic area of this project.

2.2 ANALYSIS DEVELOPMENT OF LOW PRESSURE WATER HYDRAULIC SYSTEM

Development of low pressure water hydraulic system had been done before. The analysis for several testing included water hydraulic system, pneumatic system and hydraulic system. All result for each system will be compared and analysis.

2.2.1 Breakaway Pressure

Breakaway pressure is the minimum pressure needed for cylinder to start moving during extension and retraction. In this study, the minimum pressure needed for cylinder to start moving are 0,2 bars using water hydraulic system for pneumatic system, the minimum pressure needed is more than 0 but less than 0.5 bars.

For water hydraulic system, the breakaway pressure for the cylinder is accurate because the pressure is obtained using digital pressure gauge. First the initial pressure is set to zero. The pressure slowly increased by turning the pressure relief valve. In the test that had been run, the cylinder does not move when the pressure is zero. However, cylinder starts to move when the pressure reached 0.2 bars.

2.2.2 Overall Speed and Output Force of Cylinder

The speed and output force has been determined for water hydraulic system, pneumatic system and hydraulic system. Based on results, it is known that speed for extension and retraction for both system (pneumatic and water hydraulic system) increase when the pressure given increase. The difference between these systems is that pneumatic system speed faster than water hydraulic system.

This is because water has a higher density than air. While for hydraulic system, the speed obtained is for reference only due to different size of cylinder used in this test. For output force both water hydraulic system and pneumatic system, the cylinder output increase when the pressure given increase. The retraction force is higher than extension force. This is because the pressure reading during retraction is larger than pressure reading during extension.

While for hydraulic system, extending force is higher than retraction force at pressure of 2.4 bars and 6 bars. At test pressure 8 bars, the retraction output force is higher than output force of extending force.

The difference between water hydraulic and pneumatic system in term of output pressure is not that big. This is because water hydraulic is tested at low pressure instead higher pressure. Meanwhile for hydraulic system, the force are lower than water hydraulic system and pneumatic system because of the size of hydraulic .the size of cylinder effect the output force by shown equation:

Force,
$$F = P x A$$
 (2.1)

2.2.3 Internal Leakage of Cylinder

It is already stated that there is no leakage in cylinder extension and retraction process for water hydraulic system, pneumatic system and water hydraulic system. External leakage test is not included in this study, thus leakage test for internal and external leakage cylinder should be conducted to determine any leakage.

2.2.4 Leakage of Control Valve

For water hydraulic system, electro pneumatic double solenoid control valve is used as the control unit for the actuator. Due to the fact that water is used, the control valve may cause electric shock and leakage when pressure of 8 bars is applied. And since pneumatic control valve is used because the control system uses PLC, the data obtained are not accurate. For pneumatic and hydraulic system, there is no visible leakage at the around valve. Figure 2.1 shows the leakage of the control valve.