ANALYSIS THE FUTURE APPLICATION OF RENEWABLE ENERGY ON VEHICLE

ABU BAKAR @ AS-SIDDIQ BIN AHMAD

This report is submitted as partial fulfillment

of requirements for the award Bachelor of Mechanical

Engineering (Automotive)

Faculty of Mechanical Engineering

Universiti Teknikal Malaysia Melaka

MEI 2011

'I admit that had read this thesis and in my opinion this thesis was satisfied from the aspect of scope and quality for the purpose to be awarded Bachelor of Mechanical Engineering (Automotive)'

Signature	:
Name of Supervisor I	:
Date	:
Signature	:
Name of Supervisor II	:
Date	:

CONFESSION

"I verify that this report is my own work except for the citation and quotation that the source has been clarified for each one of them"

Signature	:
Name of Author	:
Date	:

To my beloved parents,

My siblings

And also

To all my trusted friends

ACKNOWLEDGEMENT

First and foremost, we would like to thank to my supervisor of this project, Dr Musthaphah Bin Tahir for the valuable guidance and advice. He inspired me greatly to work in this project. His willingness to motivate me contributed tremendously to my project. We also would like to thank him for showing me some example that related to the topic of our project.

Besides, I would like to thank the authority of University Technical Malaysia Malacca for providing me with a good environment and facilities to complete this project. Also, I would like to take this opportunity to thank to the Mechanical Engineering Department of University Technical Malaysia Malacca for offering this subject, Projek Sarjana Muda (PSM). Based on my title of PSM, future application of renewable energy on vehicle, it gave me an opportunity to participate and learn about the operation of vehicle without using fuel as such as Electric Vehicle and Fuel Cell Vehicle.

Finally, an honorable mention goes to my families especially to my mother Mdm Esah Binti Buji and my friends for their understandings and supports on me in completing this project. Without helps of the particular that mentioned above, I would face many difficulties while doing this project.

ABSTRACT

Objective of this project is to study the energy and safety of Fuel Cell Vehicle (FCV) and Electric Vehicle (EV) and to study about Regenerative Braking System and show how Regenerative Braking System Function. A Fuel cell vehicle or FC vehicle (FCV) is a type of hydrogen vehicle which uses a fuel <u>cell</u> to produce its on-board motive power. Fuel cells create electricity to power an electric motor using hydrogen or a reformed hydrocarbon fuel and oxygen from the air. An electric vehicle (EV), also referred to as an electric drive vehicle, uses one or more <u>electric motors</u> for <u>propulsion</u>. Regenerative Braking System is an energy recovery mechanism which slows a vehicle by converting its kinetic energy into another form, which can be either used immediately or stored until needed. By studying the energy and safety of both vehicles, the best car must be chosen based on the comparison of energy and safety. Conclusion of this project is the Electric Vehicle (EV) is better compared to Fuel Cell Vehicle based on energy and safety comparison and how the Regenerative Braking System function is shown from the fabrication of Electric Bicycle with regenerative braking system.

ABSTRAK

Objektif projek ini adalah mengkaji berkenaan dengan tenaga dan isu keselamatan Electric Vehicle (EV) dan Fuel Cell Vehicle (FCV) dan kajian berkenan dengan system brek regeneratif. Fuel Cell Vehicle (FCV) ialah salah satu jenis kenderaan yang tidak menggunakan minyak petrol sebagai bahan bakar di samping menggunakan hydrogen sebagai bahan bakar. Kenderaan jenis ini menggunakan Fuel Cell bateri yang berfungsi untuk menukarkan hydrogen dalam bentuk tenaga untuk menggerakkan kenderaan tersebut. Electric Vehicle (EV) pula ialah kenderaan yang menggunakan satu atau lebih motor elektrik untuk pembakaran dalam kenderaan. Sistem Brek Regeneratif ialah system pemulihan tenaga yang melambatkan kenderaan dengan menukarkan tenaga kinetic ke tenaga lain untuk digunakan terus atau disimpan. Dengan mengkaji berkenaan dengan tenaga dan keselamatan kedua-dua jenis kenderaan tersebut, kenderaan yang terbaik dipilih berdasarkan perbandingan tenaga dan keselamatan. Kesimpulan untuk projek ini adalah *Electric Vehicle (EV)* merupakan kenderaan yang lebih baik dari Fuel Cell Vehicle (FCV) dari segi pembandingan tenaga dan keselamatan dan bagaimana system brek regenerative berfungsi ditunjukkan dengan fabrikasi basikal elektrik yang menggunakan system brek regeneratif.

TABLE OF CONTENT

CHAPTER	TITLE	PAGE
	DECLARATION	ii
	CONFESSION	iii
	DEDICATION	iv
	ACKNOWLEDGEMENT	v
	ABSTRACT	vi
	ABSTRAK	vii
	TABLE OF CONTENT	viii
	LIST OF FIGURE	xii
	LIST OF TABLES	XV
	LIST OF SYMBOLS	xvi

1 INTRODUCTION

1.1	Fuel Cell Vehicle	1
1.2	Electric Vehicle	7
1.3	Regenerative Braking	13

8

C Universiti Teknikal Malaysia Melaka

C Univ	versiti Teknik	al Malaysia N	lelaka
--------	----------------	---------------	--------

1.4	Objective	16
1.5	Scope	16
1.6	Problem Statement	17

2 LITERATURE REVIEW

2.1	Energ	Energy Efficiency	
	2.1.1	Electric Vehicle	17
	2.1.2	Fuel Cell Vehicle	19
	2.1.3	Energy Comparison of	21
		EV and FCV	
	2.1.4	FCV and EV compared	24
2.2	Safety	7	27
	2.2.1	Fuel Cell Vehicle (FCV)	27
	2.2.2	Safety Area Concern	28
	2.2.3	Hydrogen Storage Safety	29
	2.2.4	Electric Vehicle (EV)	31
	2.2.5	Battery Failure	32
	2.2.6	Battery System Safety	33
	2	3 Regenerative Braking	
	2.3.1	Regenerative Braking Control	35
		In EV/HEV	
	2.3.2	Regenerative Braking System	42
		In Electric Bicycle	
	2.3.3	Braking Force Theory	43

3. METHODOLOGY

3.1	Gantt	Chart (PSM 1)	44
3.2	Gantt	Chart (PSM 2)	45
3.3	Flow	Chart	46
	3.3.1	Comparison EV and FCV	47
	3.3.2	Regenerative Braking	48
	3.3.3	Start	49
	3.3.4	Literature Review	49
	3.3.5	FCV and EV	49
`	3.3.6	Data comparison and analyze	50
3.4	Install	ment and Experiment	51
	3.4.1	Procedure for Electric Bicycle	52
		Installment	
	3.4.2	Procedure for Electric Vehicle	58
		Theoretical Test	
	3.4.3	Procedure for Electric Vehicle	59
		Experiment Test	

RESULT AND DISCUSSION 3

4.1	Energ	y Comparison for EV and FCV	62
4.2	Advar	ntages and Disadvantage	65
	4.2.1	Advantages	65
	4.2.2	Disadvantages	66
4.3	Regenerative Braking		68
	4.3.1	Electric Bicycle Installment	68
	4.3.2	Electric Bicycle Finish	69
	4.3.3	5 component of Electric Bicycle	69
	4.3.4	Electric Bicycle Test	72

4 CONCLUSION

5.1	Electric Vehicle and Fuel Cell Vehicle	76
5.2	Regenerative Braking	77
5.3	Recommendation	78

REFERENCES	79

APPENDICES	
------------	--

83

LIST OF FIGURE

BIL TITLE PAGE

1	Fuel Cell Vehicle System Diagram	5
2	Present Fuel Cell Vehicle	6
3	Diagram For Electric Vehicle System	7
4	Present Electric Vehicle	12
5	Regenerative Braking Diagram	15
6	Well-to-Wheel for EV	22
7	Well-to-Wheel for FCV	22
8	Energy Flow Diagram for EV and FCV	26
9	Natural Gas Required	26
10	Hydrogen FCV propulsion systems	30
11	Battery Cooling Modes	34
12	Demonstration of Parallel Braking Energy	37

13	Regenerative Braking Force versus Acceleration	
14	Control logic of brake forces of front and rear wheels	
15	Control logic of brake force distribution to regenerative and mechanical brake systems	39
16	Series regenerative braking strategy	41
17	Component in Electric Bicycle	42
18	Electric Bicycle Equipment	51
19	Hand Brake Installation	52
20	Controller Configuration	53
21	Wire Connection Wheel and Controller	54
22	Wire Connection Cable and Controller	54
23	Wire Connection Throttle and Controller	55
24	Wire Connection Brake and Controller	55
25	Wire Connection Power Indicator and Controller	56
26	Wire Connection PAS and Controller	56
27	Installation controller and Battery	57
28	Wire connecting to Controller	57
29	Bicycle Power Calculator	58
30	Electric Bicycle Calculator	59
31	Chart of Energy Comparison between EV and FCV	63
32	Electric Car to Electric Bicycle	68

33	Electric Bicycle after Installment	69
34	Controller	69
35	Brake Lever	70
36	Regulator Throttle	71
37	26 inch Wheel with Motor	72
38	Battery	72

LIST OF TABLES

BIL TITLE PAGE

1	Table Comparison	62
2	Advantaged FCV and EV	65
3	Disadvantages FCV and EV	66
4	Result for Electric Bicycle Test	72

LIST OF SYMBOL AND ABBREVATION AND NOMENCLATURE

EV	=	Electric Vehicle
FCV	=	Fuel Cell Vehicle
POPA	=	Panel on Public Affairs
CO ₂	=	Carbon Dioxide
ICE	=	Internal Combustion Engine
CO	=	Carbon Monoxide
HC	=	Hydro Carbon
NEDC	=	National Engineering Design Challenge
LCA	=	Life Cycle Assessment
PEM	=	Polymer Electrolyte Membrane
CNG	=	Compressed Natural Gas
H2	=	Hydrogen
NO ₂	=	Nitrogen Oxide
LNG	=	Liquefied Natural Gas

O2	=	Oxygen
H2O	=	Hydrogen Oxide (water)

SLI = Starting Lighting Ignition

CHAPTER 1

INTRODUCTION

1.1 FUEL CELL VEHICLE

A Fuel cell vehicle or FC vehicle (FCV) is a type of hydrogen vehicle which uses a fuel cell to produce its on-board motive power. Fuel cells create electricity to power an electric motor using hydrogen or a reformed hydrocarbon fuel and oxygen from the air.

At the beginning of 2002, the World Administration announced the FreedomCAR initiative, an industry-government cooperative effort, to develop fuel cell vehicles. This prompted a subcommittee of the POPA Energy and Environment Committee to commence work on a report about fuel cells and Freedom CAR. The rationale for preparing such a report is that the topic is an important aspect of the nation's energy policy's topic that physicists justifiably feel competent to discuss.

Previous POPA studies have been on nuclear energy, energy supplies, etc. Fuel cells are of interest to the physics and physicists are actively involved in research areas for potential hydrogen storage, such as carbon annotates. The materials aspects of fuel cells are especially inside the view of physicists. Overall systems considerations, wells-to-wheels energy efficiency, and related issues can benefit from analysis by physicists. In view of the high expectations for fuel-cell vehicles generated by the Freedom CAR initiative, it seems reasonable to examine what is reality and what is unsupported optimism.

The motivation for the fuel cell vehicle initiative is to reduce dependence on imported petroleum, to reduce emissions of atmospheric pollutants, and to reduce CO₂ emissions by improving fuel economy and/or by going to a hydrogenbased system. Since the transportation sector itself uses more oil than produced domestically. Fuel Cell vehicle also addresses a serious national security issue.

Fuel cell vehicle has the following technology-specific goals for 2010:

- To ensure reliable systems with costs comparable with conventional internal combustion engine/automatic transmission systems, future fuel cell power trains should have Electric propulsion system with a 15-year life capable of delivering at least 55 kW for 18 seconds and 30 kW in a continuous mode, at a system cost of \$12/kW peak. [Note this pertains to electrical systems other than the fuel cell such as electric motors, controllers, etc.]
- A durable fuel cell power system (including hydrogen storage) that achieves 60% energy efficiency when operating at peak power and that offers a 325 W/kg power density and 220 W/L operating on hydrogen. Cost targets are \$45/kW by 2010, \$30/kW by 2015.
- To enable clean, energy-efficient vehicles operating on clean, hydrocarbon-based fuels powered by fuel cells, the goal is Fuel cell

systems, including a fuel reformer, that have a peak energy efficiency of 45% and meet or exceed emissions standards with a cost target of 45/kW by 2010 and 30/kW in 2015.

To enable the transition to a hydrogen economy, ensure widespread availability of hydrogen fuels, and retain the functional characteristics of current vehicles, the goals are

- Demonstrated hydrogen refueling with developed commercial codes and standards and diverse renewable and non-renewable energy sources. Targets: 70% energy efficiency well-to-pump; cost of energy from hydrogen equivalent to gasoline at market price, assumed to be \$1.25 per gallon (2001 dollars).
- Hydrogen storage systems demonstrating an available capacity of 6 wt% hydrogen, specific energy of 2000 W-h/kg [pertains to storage system mass], and energy density of 1100 W-h/L at a cost of \$5/kWh.

Technical goals are not yet available, but the general goals are:

- Lowering the cost of hydrogen: Currently, hydrogen is four times as expensive to produce as gasoline (when produced from its most affordable source, natural gas). The Fuel cell vehicle and Fuel Initiative seeks to lower that cost enough to make fuel cell cars cost-competitive with conventional gasoline-powered vehicles by 2010; and to advance the methods of producing hydrogen from renewable resources, nuclear energy, and even coal.
- Creating effective hydrogen storage: Current hydrogen storage systems are inadequate for use in the wide range of vehicles that consumers demand.
- **Creating affordable hydrogen fuel cells:** Currently, fuel cells are ten times more expensive than internal combustion engines. The hydrogen FUEL Initiative is working to reduce the cost to affordable levels.

FIGURE 1 FUEL CELL VEHICLE SYSTEM DIAGRAM

Audi A2H2

HONDA FCX

FIGURE 2 PRESENT FUEL CELL VEHICLE

1.2 ELECTRIC VEHICLE

An electric vehicle (EV), also referred to as an electric drive vehicle, uses one or more electric motors for propulsion. Electric vehicles include electric cars, electric trains, electric lorries, electric airplanes, electric boats, electric motorcycles and scooters, and electric spacecraft. Electric vehicles first came into existence in the mid-19th century, when electricity was among the preferred methods for automobile propulsion, providing a level of comfort and ease of operation that could not be achieved by the gasoline cars of the time. The internal combustion engine (ICE) is the dominant propulsion method for automobiles, but electric power has remained commonplace in other vehicle types, such as trains and smaller vehicles of all types.

During the last few decades, increased concern over the environmental impact of the petroleum-based transportation infrastructure, along with the spectra of peak oil, has lead to renewed interest in an electric transportation infrastructure. Electric vehicles differ from fossil fuel-powered vehicles in that the electricity they consume can be generated from a wide range of sources, including fossil fuels, nuclear power, and renewable sources such as tidal power, solar power, and wind power or any combination of those. However it is generated, this energy is then transmitted to the vehicle through use of overhead lines, wireless energy transfer such as inductive charging, or a direct connection through an electrical cable. The electricity may then be stored onboard the vehicle using a battery, flywheel, or super capacitors. Vehicles making use of engines working on the principle of combustion can usually only derive their energy from a single or a few sources, usually non-renewable fossil fuels.

A key advantage of electric or hybrid electric vehicles is regenerative braking and suspension their ability to recover energy normally lost during