PERFORMANCE ANALYSIS OF WIRELESS OPTICAL BROADBAND ACCESS NETWORK (WOBAN)

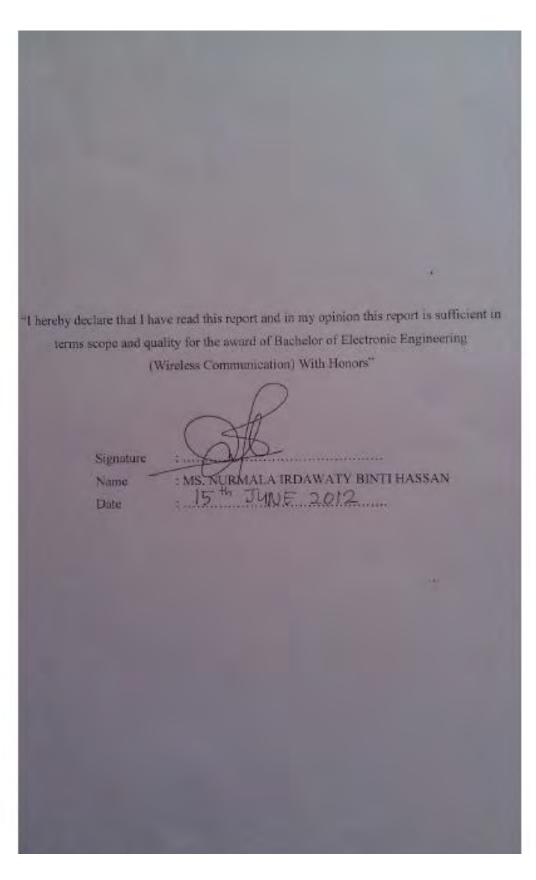
NOR SYAZWANI BT MOHD SAID

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

PERFORMANCE ANALYSIS OF WIRELESS OPTICAL BROADBAND ACCESS NETWORK (WOBAN)

NOR SYAZWANI BT MOHD SAID

This Report Is Submitted In Partial Fulfilment Of Requirement For The Bachelor Degree of Electronic Engineering (Wireless Communication) With Honours


Fakulti Kejuruteraan Elektronik dan Kejuruteraan Komputer

Universiti Teknikal Malaysia Melaka

June 2012

	UNIVERSTI TEKNIKAL MALAYSIA MELAKA MIRUTERAAN ELEKTRONIK DAN KERURUTERAAN KOMPUTUR
	BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA H
	ORMANCE ANALYSIS OF WIRELESS OFFICAL DBAND ACCESS NETWORK
Pengajian : 1	1 / 1 2
ini disimpan di Perpostakaan den 1 Laporan adalah hakmilik Un	GHD SAID mengaku membenarkan Laporan Projek Sarjana Mada aan ayaratayarat kegamaan seperti berikat: menuni Teknikal Malaysia Melaka.
	mbuai salinan untuk tustan pengitian sahajit. mbuai salinan laporan ini sebagai bahasi pertukaran antura institusi
pengajian singgi	an and second relation of some the second
4. Sila tandakan (🗹)	
aun-	⁴ (Mangandung) maklumat yang berdarjah keselamatan atau kepenenggan Mulaysia sejerti yang termisinah di dalam AKTA BARSIA RASMI (972)
полнара.	""(Mengandang) makhanat terhad yang telah ditermakan oleh organisasi badan di mana penye latikan dijalarikan)
TIDAK TERHAR	
	Disahiga aldı
105	and
(TANDATANIAN PE	SCIEDS CERTISTANDATASCAN PENVILIA
	NURMALA IRDAWATY HASSAN
	Facolity of Discharts and Computer Evaluation Universiti Teknikal Maleysa Mafaka (UTeM) Hang Tuati Jaya, 75300 Durian Tunggal, Melake
2048 18 ¹⁶ /188:302	20012 15 th June 2012

"I hereby declare that this report is the result of my own work except for quotes as cited in the reference" LASI Signature NOR SYAZWANI BT MOHD SAID Author : 15th June 2012 Date

To my beloved mother, Rohaizah bt Hj Mohd Kassim, my siblings,

and all my lovely friends

ACKNOWLEDGEMENT

First of all, my undivided gratitude to Allah S.W.T that has given me blessing and strength to complete this project entitled "Performance Analysis of Wireless Optical Broadband Access Network" successfully. The writing of this thesis is one of the most significant academic challenges that I have ever face. I would like to thank my supervisor, Pn Nurmala Irdawaty Hassan for giving me support and motivation during completing this thesis. I am also thankful to my friend and my classmate for their encouragement and advices. Finally, I thank my parents for supporting me throughout all my studies in Universiti Teknikal Malaysia Melaka.

ABSTRACT

This paper presents the study of performance analysis of wireless optical broadband access network. The length of the optical fiber will give an effect to the performance of WOBAN and hence, the investigation of the optimum length is done. WOBAN is the most effective access network because it provide high bandwidth and good scalability with cost effectives. Optiwave Optisystem software tool is used to accomplish the design and performance analysis of WOBAN. The performance analysis is analysed in terms of Power Received, Q factor, Eye Diagram and eye height, and Bit Error Rate (BER).

ABSTRAK

Kertas kerja ini membentangkan kajian analysis mengenai prestasi rangkaian wayales jalur lebar optik (*WOBAN*). Panjang gentian optik akan divariasikan untuk melihat kesan kepada prestasi rangkaian wayales jalur lebar optic (*WOBAN*) dan oleh itu penyisasatan optimum akan dilakukan terhadap system *WOBAN*. *WOBAN* adalah rangkaian akses yang paling berteknologi kerana ia menyediakan jalur lebar yang tinggi, skala yang tinggi dan kos yang berkesan. Perisian Optiwave Optisystem akan digunakan untuk mereka litar *WOBAN* dan menganalisis prestasi *WOBAN*. *WOBAN* akan dianalisis dalam bentuk *Power Received, Q factor, Eye Diagram* dan *eye height*, dan *Bit Error Rate (BER)*.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGES
	PROJECT TITLE	i
	STATUS REPORT FORM	ii
	STUDENT DECLARATION	iii
	SUPERVISOR DECLARATION	iv
	DEDICATION	V
	ACKNOWLEDGEMENT	vi
	ABSTRACT	vii
	ABSTRAK	viii
	TABLE OF CONTENTS	ix
	LIST OF TABLES	xiii
	LIST OF FIGURES	xiv
	LIST OF ACRONYMS	xvi
	LIST OF APPENDICES	xviii
I	INTRODUCTION	1

1 1	Objectives		١
1.1	Objectives	2	2

1.2	Proble	em Statem	ent	3
1.3	Scope	of Work		3
1.4	Thesis	s Outline		4
LITE	RATUI	RE REVI	EW	6
2.1	Optica	al Access 1	Network Overview	6
2.2	Wirele	ess Access	Network Overview	10
2.3	Wirele	ess Optica	Broadband Access Network	11
2.4	WOB.	AN Archit	ecture	12
2.5	Comp	elling Solu	ution	14
2.6	Optica	al Fiber		15
	2.6.1	Single M	lode Optical Fiber	17
	2.6.2	Multi M	ode Optical Fiber	18
	2.6.3	Compari	son between Single Mode and	19
		_	de Optical Fiber	
	2.6.4	Fiber Di	spersion	19
		2.6.4.1	Modal dispersion	21
		2.6.4.1	Chromatic dispersion	22
2.7	Perfor	mance Par	rameter	23
	2.7.1	Eye Diag	gram	23
	2.7.2	Bit Error	Rate	25
	2.7.3	Power S	pectrum	26
	2.7.4	Q Factor		26
	2.7.5	Signal N	oise Ratio	27
2.8	Advar	ntages of C	Optical Fiber over Copper Wire	27

II

III	METHODOLOGY

1V

3.1	Flowc	charts of the project	31
3.2	Flowc	charts of simulation circuit	32
3.3	K Ma	p of Project	33
3.4	Propo	sed Block Diagram of WOBAN	34
3.5	Expec	cted Result	35
3.6	Simul	ation Process	36
	3.6.1	Starting Optisystem	36
	3.6.2	Setting and Changing the Bit Rates	37
	3.6.3	Adding the Component	38
	3.6.4	Connecting Component	38
	3.6.5	Setting Component Parameter	39
	3.6.6	Setting the Parameter Sweep	42
	3.6.7	Running the Simulation	46
	3.6.8	Viewing the Results	47
RESU	ULTS A	ND DISCUSSIONS	48
4.1	Power	r Received Results	50
4.2	Q-fact	tor Results	52

4.3Bit Error Rate (BER) Performance53

4.4	Eye Diagram and Eye Height Results	54
4.5	RF Spectrum Analyzer	56

4.6Best Combination Results57

30

V	CONCLUSION AND RECOMMENDATION		58
	5.1	Conclusion	58
	5.2	Recommendation	59
REFERENCES		61	
APPENDIX	ΧA		64
APPENDIX	КВ		65

LIST OF TABLES

NO TITLE PAGE

2.1	The Advantages of WOBAN	14
2.2	Comparison between Single Mode and Multimode	19
2.3	Advantages of Optical Fiber	27
3.1	Typical Parameters of WOBAN	35
3.2	Starting Optisystem	36
3.3	Setting and Changing the Bit Rates	37
3.4	Adding the Component	38
3.5	Connecting Component	38
3.6	Setting Component Parameter	39
3.7	Setting Component Parameter	42
3.8	Running the Simulation	46
3.9	Viewing the Results	47
4.1	Power received results	50
4.2	Q-factor results	52
4.3	BER results	53
4.4	Eye Diagram and Eye Height results	54
4.5	Best Combination Results	57

LIST OF FIGURES

PAGE

2.1	Basic diagram of Passive Optical Network (PON)	8
2.2	The simple WDM PON architecture	8
2.3	Evolution of optical access network	9
2.4	WOBANs upstream and downstream protocols	13
2.5	WOBAN Architecture	13
2.6	Basic structure of optical fiber	16
2.7	Basic fiber optic communication system	16
2.8	Single Mode optical fiber	17
2.9	Multi Mode Optical fiber	18
2.10	Broaden Pulse	19
2.11	Intersymbol Interference	20
2.12	Output signal with dispersion	20
2.13	Mode propagation in multimode optical fiber	22
2.14	Mode propagation with material and waveguide dispersion	23
2.15	The Formation of eye diagram	24
2.16	Basic information contain in eye diagram	25
3.1	Methodology flowchart	31
3.2	Simulation flowchart	32
3.3	WOBAN system by using K chart	33

3.4	Block diagram of Wireless Optical Broadband Access Network	34
3.5	Optisystem Graphical User Interface	36
3.6	Layout parameter dialog box	37
3.7	Connecting components symbol	38
3.8	Connecting ports	38
3.9	Connecting Component	38
3.10	WDM Transmitter properties dialog box	39
3.11	Bidirectional Optical Fiber dialog box	40
3.12	1xN Splitter Bidirectional dialog box	40
3.13	WOBAN Simulation Circuit	41
3.14	Bidirectional Optical Fiber dialog box	43
3.15	Set total sweep iteration	43
3.16	Total parameter sweep iteration dialog box	44
3.17	Set total parameter sweeps	44
3.18	Parameter sweep dialog box	44
3.19	Parameter sweep dialog box 2	45
3.20	Parameter iteration spread dialog box	45
3.21	Parameter sweeps dialog box 3	45
3.22	Calculation dialog box 1	46
3.23	Calculation dialog box 2	46
3.24	BER Analyzer Monitor	47
4.1	Transmitted Optical Spectrum	51
4.2	RF Spectrum at ONU 1	56
4.3	Optical Spectrum at ONU 1	56

LIST OF ACRONYMS

AWG-Array Wave GuideBER-Bit Error RateBS-Base StationBPON-Broadband Passive Optical NetworkCO-Central OfficeDAM-Dual Arm ModulatorDFB-Distributed Feedback Laser
BS-Base StationBPON-Broadband Passive Optical NetworkCO-Central OfficeDAM-Dual Arm ModulatorDFB-Distributed Feedback Laser
BPON-Broadband Passive Optical NetworkCO-Central OfficeDAM-Dual Arm ModulatorDFB-Distributed Feedback Laser
CO-Central OfficeDAM-Dual Arm ModulatorDFB-Distributed Feedback Laser
DAM-Dual Arm ModulatorDFB-Distributed Feedback Laser
DFB - Distributed Feedback Laser
EPON - Ethernet Passive Optical Network
FTTH - Fiber To The Home
FTTC - Fiber To The Curb
FTTB - Fiber To The Building
Gbps - Gigabits per Second
GFP-PON - Generic Framing Procedure Passive Optical Network
GPON - Gigabit Passive Optical Network
HSPA - High Speed Packet Access
IEEE - Institute of Electrical and Electronic Engineering
ISI - Intersymbol Interference
LED - Light Emitting Diode
LOS - Line of Sight
MAN - Metropolitan Area Network
Mbps - Megabits per Second

MMF	-	Multi Mode Fiber	
NLOS	-	Non Line of Sight	
NRZ	-	Non Return to Zero	
OFDM	-	Orthogonal Frequency Division Multiplexing	
OLT	-	Optical Line Terminal	
ONU	-	Optical Network Unit	
IL	-	Optical Interleaver	
Ps	-	picosecond	
PS/C	-	Passive splitters / combiner	
PON	-	Passive Optical Network	
RZ	-	Return Zero	
<u>RF</u>	-	Radio Frequency	
RN	-	Remote Node	
SMF	-	Single Mode Fiber	
SNR	-	Signal to Noise Ratio	
TDM PON	-	Time Division Multiplexing Passive Optical Network	
WDM PON	-	Wavelength Division Multiplexing Passive Optical Network	
WiFi	-	Wireless Fidelity	
WiMAX	-	Wordwide Interoperability for Microwave Access	
WMN	-	Wireless Mesh Network	
WOBAN	-	Wireless Optical Broadband Access Network	

LIST OF APPENDICES

NO	TITLE	PAGE
A	Gantt Chart and Milestone (Δ)	64
В	Component Library	65

CHAPTER 1

INTRODUCTION

The emerging demand for multimedia communication such as voice, data pictures, video services and internet streaming require for the realization of broadband distribution system. During the past decade, the use of optical fiber as a transmission line experience an enormous growth due to the wide bandwidth it can provide. Wireless Optical Broadband Access Network, (WOBAN) is one of the broadband access networks that use optical fiber as a transmission line from the optical backhaul to the wireless mesh network. The basic purpose of WOBAN is to eliminate wired dropped at every wireless router at end user and the used of fiber optic which give an advantages because it does not need to penetrate to the end user. Moreover, the architecture of WOBAN is a combining of wireless and optical where at the back end is a wired optical network and at the front end is manage by wireless connectivity.

At the back end of the network, optical line terminal (OLT) resides in the central office (CO) and is connected via optical fiber to multiple optical network units (ONU)

2

[1]. Remote node (RN) will distributed data to the ONU via optical links. At the front end, a set of wireless nodes (routers) forms a wireless mesh network (WMN) [1]. End users are connected to the network through these nodes where the locations are fixed in a wireless mesh network (WMN). A number of selected routers are connected to the ONU which is also mean connected to the optical backhaul. End users send packets to a nearby wireless node and travel through the wireless mesh and reach the OLT via the gateways.

Before WOBAN is developed, the recent trends of the optical access network are a Passive Optical Network (PON). PON is a point to multipoint optical network. In this configuration, it used a different wavelength of channel for upstream and downstream from the central office (Optical Line Terminal) to the Optical Network Unit (ONU). A traditional PON also known as TDM PON which indicate a time division multiplexed where the number of ONU"s is limited by the splitting loss and by the bit rate of the transceiver in the OLT"s and ONU"s. Next is WDM PON which is developed by the high demand of end users as the bandwidth can be very low because it is share by all end users. WDM PON provides excellent stability and may not suffer power splitting loss. In comparison to the traditional PON, WDM PON used multiple wavelengths that can support both upstream and downstream direction. WDM PON creates a point to point link between OLT and each ONU.

1.1 Objectives

The purpose of this paper is to construct WOBAN circuit by using Optiwave OptiSystem. The next objective is to analyze the performance of the Wireless Optical Broadband Access Network by developing a WOBAN circuit by using Optiwave OptiSystem software. To compare between different fiber length as a transmission line between the front end and back end of the network. Finally, the performance of the WOBAN with the best fiber length will be discussed.

1.2 Problem Statement

Due to the high demand from the customers or end users, they are asking for more cost effective communication system that can support anytime, anywhere and any media they want. Moreover, the users of wireless communications are demanding more capacity and therefore higher frequencies. Other than that, since WOBAN is a combining of optical and wireless communications, it presents a compelling solution that optimizes the best of both worlds.

In addition, running optical fiber to every end user may be costly due to the expensive installation cost. Moreover, providing wireless access from CO to every end user may not be possible because of limited spectrum [2]. The users of wireless communications are demanding more capacity, bandwidth and high frequencies [2]. Therefore, the investigation on the effect of optimum optical fiber length towards a better performance in wireless mesh network is required.

1.3 Work Scope

The work scope of this research is to study the architecture of the block diagram of WOBAN. Next, the parameters of the optical backhaul and wireless front end of the network are examined. Moreover, this research concentrates on the performance analysis of wireless optical broadband access network by varying the fiber length of the transmission line of the network. Lastly, the results are analysed based on Power Received, Q factor, Eye Diagram and eye height and Bit Error Rate (BER).

1.4 Thesis Outline

There are five chapters consist in this thesis; Introduction, Literature Review, Methodology, Result and Discussion and Conclusion and Recommendation. Chapter 1 briefly explains the introduction of Wireless Optical Broadband Access Network (WOBAN) and also the objectives of the project that need to be achieved at the end of this project. Problem statement and work scope are also included in this chapter which help the overflow of simulation and thesis writing.

Chapter 2 defines WOBAN for the optical wireless network and Wireless access network. This chapter also explores WOBAN architecture which includes Optical Link Terminal (OLT), Remote Node (RN) and Optical Network Unit (ONU). Other than that, the advantages of WOBAN over the wireline optical are summarized in this chapter. Fiber optic also discussed in this chapter which involves the type of fiber and its comparison, dispersion effect, optical length effect and the advantages of using optical fiber over copper wire. All the information in this chapter is gathered from related journals and fiber optic books with citation.

Chapter 3 focused on methodology of the project. Flowchart and K-Map of the project help the flow of the simulation design and also which parameter needs to be focused. The proposed scheme is introduced in this chapter which define the bit rate used for backhaul and wireless part. Optical fiber length is varied to analyze the performance of WOBAN. In addition, the simulation process of developing WOBAN circuit is included in this chapter. The process involved are by starting OptiSystem, setting the layout, adding component, connecting component, setting the component parameter, setting the parameter sweep, running the simulation and lastly viewing the result.

Chapter 4 explores the result and discussion obtained from the simulation circuit. The results are observed for 15km, 20km and 25km fiber length in term of power received, Q factor, eye diagram and eye height and bit error rate (BER). In this session, the results gained are analysed by referring to the parameter set earlier in the circuit.

Chapter 5 conclude the overall thesis. The best length with the least bit error rate and the best data rate at both optical backhaul and wireless network are explained in this chapter. Recommendations for this circuit are also included.