SIMULATION OF WORLDWIDE INTEROPERABILITY FOR MICROWAVE ACCESS (WiMAX) SYSTEM

AFIDATUL NADIA BT MOK HAT

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

SIMULATION OF WORLDWIDE INTEROPERABILITY FOR MICROWAVE ACCESS (WiMAX) SYSTEM

AFIDATUL NADIA BT MOK HAT

This Report Is Submitted In Partial Fulfilment of Requirement for the Bachelor Degree of Electronic Engineering (Wireless Communication) With Honours

Fakulti Kejuruteraan Elektronik dan Kejuruteraan Komputer

Universiti Teknikal Malaysia Melaka

June 2012

WALAYSIA AN	FAKULTI KEJ	J NIVERSTI TEKNIKAL MALAYSIA MELAKA IURUTERAAN ELEKTRONIK DAN KEJURUTERAAN KOMPUTER
SUSAINA		BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA II
Tajuk Pro	ojek : SIMUL MICRO	ATION OF WIRELESS INTEROPERABILITY OF DWAVE ACCESS (WIMAX)
Sesi Pengajian	: 1	1 / 1 2
Saya AFIDA ini disimpan di 1. Laporan a	TUL NADIA BT M i Perpustakaan deng dalah hakmilik Uni	MOK HAT mengaku membenarkan Laporan Projek Sarjana Muda gan syarat-syarat kegunaan seperti berikut: iversiti Teknikal Malaysia Melaka.
2. Perpustak	aan dibenarkan mer	mbuat salinan untuk tujuan pengajian sahaja.
3. Perpustak	aan dibenarkan mer	mbuat salinan laporan ini sebagai bahan pertukaran antara institusi
pengajian	tinggi.	
4. Sha tanua	Kan(+).	
	SULIT*	*(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)
	TERHAD**	**(Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)
J	TIDAK TERHAD	
ī	TANDATANGAN PEN	Disahkan oleh: (COP DAN TANENTANGAN PENYELIA) AZAHAJE BIN BALLEN Penayarah Fakuti Kejunderaan Elektronik Dan Rejeverann Kompany Universiti Teknikal Matayain Matanan Kompany
Tarikh: 15 ⁷⁴ J	IUNE 2012	76109 Durinn Turg and Marine Tarikh: 15/6/2012

"I hereby declare that this report is the result of my own work except for quotes as cited in the reference"

Signature Author Date iii

"I hereby declare that I have read this report and in my opinion this report is sufficient in terms scope and quality for the award of Bachelor of Electronic Engineering (Wireless Communications) With Honors"

Signature : EN. AZAHAR BIN ALLEH

Name Date

iv

iv

Special dedication to my family, my kind hearted supervisor En. Azahari bin Salleh and to all my dearest friends.

ACKNOWLEDGEMENT

First of all, I would like to extend my sincere gratitude to my supervisor, En. Azahari bin Salleh, for his assistance and guidance towards the progress of this project. En. Azahari has been patiently monitoring my progress, guided me in the right direction and offering encouragement to complete this project entitled "Simulation of Worldwide Interoperability for Microwave Access (WiMAX) System". Obviously the progress I had now will be uncertain without his assistance. I am also thankful to my friend and my classmate for their invaluable assistances towards this thesis project. I would like to thank to Universiti Teknikal Melaka Melaysia (UTeM) and most of all I am very grateful to my family for their unfailing encouragement and financial support they have given me over the years.

ABSTRACT

This project presents the simulation of Worldwide Interoperability for Microwave Access (WiMAX) system. Previous technology such as Digital Subscriber Line (DSL) has coverage limitation. WiMAX can solve this limitation. This project only focuses on the Orthogonal Frequency-Division Multiplexing (OFDM) which is adopted by WiMAX on its physical layer. The OFDM is uses adaptive modulation technique for modulator and demodulator. The OFDM model built in this project including the transmitter and receiver. MATLAB software tool is used to build the OFDM model and analysis the performance of WiMAX system. Hence the investigation of the performance of OFDM physical layer in WiMAX system by using different adaptive modulation techniques like Binary Phase Shift Keying (BPSK), Quadrature Phase Shift Keying (QPSK), Quadrature Amplitude Modulation is done. The performance analysis is based on the Bit Error Rate (BER), Signal to Noise Ratio (SNR) and Probability Error (Pe). The WiMAX system used 64 QAM at near the base station and followed by 16 QAM and QPSK. BPSK is used at the cell boundary. The WiMAX system has freedom to choose the modulation techniques.

ABSTRAK

Projek ini membentangkan simulasi operasi rentas di seluruh dunia bagi Akses Gelombang Mikro (WiMAX). Teknologi sebelumnya seperti Talian Digital Pelanggan (DSL) mempunyai had liputan. WiMAX boleh menyelesaikan batasan ini. Projek ini hanya memberi tumpuan kepada Pemultipleksan Pembahagian Frekuensi Ortogon (OFDM) yang diterima pakai oleh WiMAX pada lapisan fizikal. OFDM adalah menggunakan teknik modulasi yang adaptif untuk pemodulat dan penyahmodulat. Model OFDM yang dibina dalam projek ini termasuk pemancar dan penerima. Perisian MATLAB digunakan untuk membina model OFDM dan analisis prestasi sistem WiMAX. Oleh itu siasatan daripada prestasi lapisan fizikal OFDM dalam sistem WiMAX dengan menggunakan teknik modulasi yang berbeza yang adaptif seperti Fasa Binari Bit (BPSK), Fasa Kuadratur Bit (QPSK), Kuadratur Pemodulatan Amplitud (QAM) dilakukan. Analisis prestasi berdasarkan Kadar Ralat (BER), Nisbah Isyarat Hingar (SNR) dan Kebarangkalian Ralat (Pe). Sistem WiMAX menggunakan 64 QAM di berhampiran stesen pangkalan dan diikuti oleh 16 QAM dan QPSK. BPSK digunakan di sempadan sel. Sistem WiMAX mempunyai kebebasan untuk memilih teknik modulasi.

TABLE OF CONTENT

CHAPTER	ITEM / TITLE	PAGE
	PROJECT TITLE	i
	PSM STATUS VERIFICATION FORM	ii
	DECLARATION	iii
	SUPERVISOR VERIFICATION FORM	iv
	DEDICATION	v
	ACKNOWLEDGEMENT	vi
	ABSTRACT	vii
	ABSTRAK	viii
	TABLE OF CONTENT	ix
	LIST OF TABLES	xiv
	LIST OF FIGURES	XV
	LIST OF ABBREVIATIONS	xvii
	LIST OF APPENDICES	XX

I INTRODUCTION

1.1	Project Background	1
1.2	Problem Statement	2
1.3	Objectives	3
1.4	Scopes	3
1.5	Thesis Outline	5

II LITERATURE REVIEWS

2.1	World	wide Interoperability for Microwave Access (WiMAX)	7
	2.1.1	WiMAX Objectives	8
	2.1.2	Fixed and Mobile WiMAX	10
	2.1.3	WiMAX Physical Layer	12
		2.1.3.1 Line-of-Sight (LOS)	13
		2.1.3.2 Non Line-of-Sight (NLOS)	14
2.2	Orthog	gonal Frequency Division Multiplexing (OFDM)	15
	2.2.1	Similar with Frequency Division Multiplexing (FDM)	16
	2.2.2	Basic OFDM System	18
2.3	Modul	ation Techniques	21
	2.3.1	Amplitude-Shift Keying (ASK)	21

C Universiti Teknikal Malaysia Melaka

1

7

	2.3.2	Frequency S	Shift Keying (FSK)	22
2.4	Adapt	laptive Modulation Techniques		
	2.4.1	Quadrature F	Phase Shift Keying (QPSK)	25
	2.4.2	2.4.2 Quadrature Amplitude Modulation (QAM)		26
		2.4.2.1	16 QAM	27
		2.4.2.2	64 QAM	27

29

3.1	K-Map of Project		
3.2	Flow	Chart	32
	3.2.1	Project Flow Chart	32
	3.2.2	Simulation Flow Chart	34
3.3	Block	Diagram	35
	3.3.1	Model 1	35
	3.3.2	Model 2	37
3.4	Simul	ation Process	38
	3.4.1	Adaptive Modulation Techniques	38
	3.4.2	Plot Graph	38
		3.4.2.1 Bit Error Rate (BER)	39

xi

	3.4.2.2 Signal to Noise Ratio (SNR)	39
	3.4.2.3 Probability Error (Pe)	40
3.5	Parameters	40
RESU	ULTS AND DISCUSSION	42
4.1	Bit Error Rate (Ber) Performance	43
	4.1.1 Simple Model	43
	4.1.2 Model with Cyclic Prefix	45
	4.1.3 Theoretical Bit Error Rate (BER)	47
4.2	Probability of Error (Pe)	49
4.3	Power Spectral Density (PSD)	51
4.4	Cyclic Prefix (CP)	54

IV

V

CON	CLUSION	56
5.1	Conclusion	57
5.2	Future Work	59

REFERENCI	ES	60
APPENDIX	Α	63
APPENDIX	В	66
APPENDIX	С	70

LIST OF TABLES

3.1	The parameters in simulation	41
4.1	Adaptive modulation techniques for model 1 at $BER = 10^{-3}$	44
4.2	Adaptive modulation techniques for model 2 at $BER = 10^{-3}$	46
4.3	Adaptive modulation theoretical values at $BER = 10^{-3}$	48
4.4	Probability of error (Pe) for adaptive modulation at $BER = 10^{-1}$	50

LIST OF FIGURES

NO	TITLE	PAGE

2.1	WiMAX objectives	8
2.2	WiMAX physical and MAC layer architecture	13
2.3	WiMAX in LOS condition	14
2.4	WiMAX in NLOS condition	15
2.5	Frequency Division Multiplexing (FDM)	17
2.6	Orthogonal Frequency Division Multiplexing (OFDM)	18
2.7	Basic OFDM block diagram	19
2.8	Frequency Domain Distribution of symbols	20
2.9	Adaptive modulation techniques	24
2.10	Adaptive modulation scheme	24
2.11	QPSK, (a) Block Diagram (b) Constellation	25

2.12	QAM modulator diagram	26
2.13	16 QAM constellation	27
2.14	64 QAM constellation	28
3.1	WiMAX system by using K-Map	31
3.2	The flowchart of the project development	32
3.3	The flow chart of the simulation process	34
3.4	OFDM simple model	36
3.5	OFDM model with cyclic prefix	37
4.1	OFDM with adaptive modulation techniques for model 1	43
4.2	OFDM with adaptive modulation techniques for model 2	45
4.3	Theoretical value of BER	47
4.4	Probability of error (Pe)	49
4.5	Power spectral density when $SNR = -100 \text{ dB}$	51
4.6	Power spectral density when $SNR = -50 \text{ dB}$	52
4.7	Power spectral density when $SNR = 0 dB$	52
4.8	Power spectral density when $SNR = 50 \text{ dB}$	53
4.9	Power spectral density when $SNR = 100 \text{ dB}$	53
4.10	Channel attributes without CP	54
4.11	Channel attributes with CP	55

LIST OF ABBREVIATIONS

WiMAX	-	Worldwide Interoperability Microwave Access
OFDM	-	Orthogonal Frequency Division Multiplexing
OFDMA	-	Orthogonal Frequency Division Multiplexing Access
OFDM PHY	-	Orthogonal Frequency Division Multiplexing Physical Layer
MAC	-	Media Access Control
MSDUs	-	MAC Service Data Units
OSI	-	Open Systems Interconnection
MIMO	-	Multiple Input and Multiple Output
IEEE	-	Institute of Electrical and Electronic Engineers
DSL	-	Digital Subscriber Line
WLAN	-	Wireless Local Area Network
WiFi	-	Wireless Fidelity
UWB	-	Ultra Wide Band

PSK	-	Phase Shift Keying
ASK	-	Amplitude Shift Keying
BPSK	-	Binary Phase Shift Keying
QPSK	-	Quadrature Phase Shift Keying
QAM	-	Quadrature Amplitude Modulation
BER	-	Bit Error Rate
SNR	-	Signal to Noise Ratio
Pe	-	Probability error
PSD	-	Power Spectral Density
WBA	-	Wireless Broadband Access
LOS	-	Line-of-Sight
NLOS	-	Non Line-of-Sight
WiBro	-	Wireless Broadband
QoS	-	Quality of Service
TDD	-	Time Division Duplexing
FDD	-	Frequency Division Duplexing
MS	-	Mobile Station
BS	-	Base Station
MIC	-	Ministry of Information and Communication
ITU	-	International Telecommunication Union
ISI	-	Inter Symbol Interference

ICI	-	Inter Channel Interference
CDMA	-	Code Division Multiple Access
СР	-	Cyclic Prefix
AWGN	-	Add White Gaussian Noise
FDM	-	Frequency Division Multiplexing
TDM	-	Time Division Multiplexing
ATM	-	Asynchronous Transfer Mode
FFT	-	Fast Fourier Transform
IFFT	-	Inverse Fast Fourier Transform
FPGA	-	Field Programmable Gate Array
ASIC	-	Application Specific Integrated Circuit
Mbps	-	Mega Bit per Second
GHz	-	Giga Hertz
dB	-	Decibel
ft	-	Feet
m	-	Meter

LIST OF APPENDICES

NO	TITLE	PAGE
А	OFDM Model 1	63
В	OFDM Model 2	66
С	Functions	70

хх

CHAPTER I

INTRODUCTION

1.1 Project Background

The wireless technologies offer to a wide range of customers from having the freedom to pay bills while stuck in traffic, to receiving notification of the change in business while having lunch and to taking English lessons while returning home on the train or bus, the convenience, productivity, and time saving benefits of these advancements are huge. Worldwide Interoperability for Microwave Access (WiMAX) is a technology that enables anywhere, anytime access to information and applications at low cost and with a small investment [1].

The WiMAX technology has attracted significant interests from wireless communication industry in recent years in all the fields including students, researchers, systems engineers and operators. WiMAX is introduced by the Institute of Electrical and Electronic Engineers (IEEE) offers greater range and bandwidth than the other available or soon-to-be available broadband wireless access technologies such as Wireless Fidelity (WiFi) and Ultrawideband (UWB) family of standards. WiMAX technology can reach a theoretical 30 miles coverage radius and achieve data rates up to 75 Mbps, although at extremely long range, throughput is closer to the 1.5 Mbps performance of typical broadband services, similar to that used for wired broadband services [1].

In this project, a simulation model based on Orthogonal Frequency Division Multiplexing-Physical Layer (OFDM-PHY) model in different simulation scenarios with different modulation techniques such as Binary Phase Shift Keying (BPSK), Quadrature Phase Shift Keying (QPSK) and Quadrature Amplitude Modulation (QAM) (Both 16 and 64) will built to find out the best performance of physical layer for WiMAX Mobile. The performance has been concluded based on Bit-Error-Rate (BER), Signal-to-Noise Ratio (SNR) and Probability of Error (Pe) output through MATLAB Simulation.

1.2 Problem Statement

Digital Subscriber Line (DSL) service is one form of Internet access. The concept of DSL achieves broadband speeds over ordinary phone lines. There are some disadvantages to the use of DSL service which is availability. It's because DSL is distance sensitive, availability is determined by the distance from the provider's central office. The distance sensitivity limitation make the DSL service is often not available in non metropolitan or rural areas but widely in metropolitan areas [2].

Wireless Broadband Access (WBA) via DSL, T1-line or cable infrastructure is not available especially in rural areas. The DSL can covers only up to near about 18,000 feet (3 miles) from the DSL provider's local office or point of precence, this means that many urban, suburban, and rural areas may not served. The WiFi standard broadband connection may solve this problem a bit but not possible in everywhere due to coverage limitations. WiFi networks have limited range. A typical WiFi home router might have a range of 45 m (150 ft) indoors and 90 m (300 ft) outdoors. The Metropolitan-Area Wireless standard which is called WiMAX can solve these limitations [3].

WiMAX can operate in both Line-Of-Sight (LOS) and Non-Line-Of-Sight (NLOS) environments. WiMAX uses OFDM in its physical layer and the OFDM uses adaptive modulation techniques [4].

1.3 Objectives

The main objective of this project is to develop the OFDM model of WiMAX system by using MATLAB Software. The OFDM model which is OFDM transmitter and OFDM receiver is connect with a channel.

The second objective is to analyze the performance of OFDM physical layer in different adaptive modulation techniques such as BPSK, QPSK, 16-QAM and 64 QAM based on the simulation results of Bit-Error-Rate (BER), Signal-to-Noise Ratio (SNR) and Probability of Error (Pe). The modulation technique is applied at the OFDM transmitter and the demodulation technique is applied at the OFDM receiver. The BER,